首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
BACKGROUND: Here we describe a novel DNA vaccine formulation that can enhance cytotoxic T lymphocyte (CTL) activity through efficient gene delivery to dendritic cells (DCs) by mannose receptor-mediated endocytosis. METHODS: Ovalbumin (OVA) was selected as a model antigen for vaccination; accordingly, OVA-encoding pDNA (pCMV-OVA) was constructed to evaluate DNA vaccination. Mannosylated cationic liposomes (Man-liposomes) were prepared using cholesten-5-yloxy-N-{4-[(1-imino-2-D-thiomannosylethyl)amino]butyl}formamide (Man-C4-Chol) with cationic lipid. The potency of the mannosylated liposome/pCMV-OVA complex (Man-lipoplex) was evaluated by measuring OVA mRNA in CD11c+ cells, CTL activity, and the OVA-specific anti-tumor effect after in vivo administration. RESULTS: An in vitro study using DC2.4 cells demonstrated that Man-liposomes could transfect pCMV-OVA more efficiently than cationic liposomes via mannose receptor-mediated endocytosis. In vivo studies revealed that the Man-lipoplex exhibited higher OVA mRNA expression in CD11c+ cells in the spleen and peritoneal cavity and provided a stronger OVA-specific CTL response than intraperitoneal (i.p.) administration of the conventional lipoplex and intramuscular (i.m.) administration of naked pCMV-OVA, the standard protocol for DNA vaccination. Pre-immunization with the Man-lipoplex provided much better OVA-specific anti-tumor effect than naked pCMV-OVA via the i.m. route. CONCLUSIONS: These results suggested that in vivo active targeting of DNA vaccine to DCs with Man-lipoplex might prove useful for the rational design of DNA vaccine.  相似文献   

2.
Cytotoxic T lymphocytes (CTLs) are primed by peptide antigens that are endogenously processed in the cytosol and presented in the context of major histocompatibility complex I (MHC I) molecules of antigen-presenting cells (APCs). Exogenous soluble protein antigens do not gain efficient entry into the cytosol of APCs, and therefore requires a special cytosolic delivery method. We have developed such a delivery strategy adopting the well-elucidated cytosol-invading listerial endosomal escape mechanism, and report here an efficient delivery of exogenous whole protein antigen into the cytosol in a mouse model. Co-encapsulation of listeriolysin O (LLO) inside liposome (LLO-liposome) was required for delivery of ovalbumin (OVA) into the cytosol of APCs in primary cultures. LLO-liposome-mediated OVA immunization in mice engendered significantly higher OVA-specific CTL activity and increased antigenic peptide-specific CTL precursor (CTLp) frequency as compared to non-LLO-liposome or soluble OVA immunizations. Interferon-gamma (IFN-gamma) production upon specific stimulation by MHC I-restricted peptide was also significantly stronger by the inclusion of LLO in the liposomes. Rerouting of antigen into the cytosol by LLO-liposomes, however, did not reduce the extent of anti-OVA antibody responses. Moreover, LLO-liposome-antigen vaccination was robust in conferring protection to mice from lethal challenges with antigen-expressing tumor cells. Our study demonstrates a novel delivery system for efficient introduction of exogenous protein into the cytosol in vivo, priming cellular immune responses, which are protective in nature.  相似文献   

3.
In vivo priming of cytotoxic T lymphocytes (CTL) by DNA injection predominantly occurs by antigen transfer from DNA-transfected cells to antigen-presenting cells. A rational strategy for increasing DNA vaccine potency would be to use a delivery system that facilitates antigen uptake by antigen-presenting cells. Exogenous antigen presentation through the major histocompatibility complex (MHC) class I-restricted pathway of some viral antigens is increased after adequate virus-receptor interaction and the fusion of viral and cellular membranes. We used DNA-based immunization with plasmids coding for human immunodeficiency virus type 1 (HIV-1) Gag particles pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) to generate Gag-specific CTL responses. The presence of the VSV-G-encoding plasmid not only increased the number of mice displaying anti-Gag-specific cytotoxic response but also increased the efficiency of specific lysis. In vitro analysis of processing confirmed that exogenous presentation of Gag epitopes occurred much more efficiently when Gag particles were pseudotyped with the VSV-G envelope. We show that the VSV-G-pseudotyped Gag particles not only entered the MHC class II processing pathway but also entered the MHC class I processing pathway. In contrast, naked Gag particles entered the MHC class II processing pathway only. Thus, the combined use of DNA-based immunization and nonreplicating pseudotyped virus to deliver HIV-1 antigen to the immune system in vivo could be considered in HIV-1 vaccine design.  相似文献   

4.
We previously reported that exogenous antigens complexed with the cationic liposome lipofectin (LF) were efficiently presented via major histocompatibility complex (MHC) class I molecules on pulsed dendritic cells (DCs) in vitro. In the present study, we demonstrated that MHC class I-restricted antigen presentation on DC2.4 cells, a murine immature DC line, treated with LF-antigen complexes was remarkably suppressed through the inhibition of endocytosis, proteasome catalysis, and Golgi transport. We also found that LF did not influence expression of interleukin-12 p40 mRNA, MHC molecules, or co-stimulatory molecules in DC2.4 cells. These findings suggest that an antigen-loading procedure using LF could enhance delivery of exogenous antigens to the classical MHC class I pathway in DCs, but it does not initiate DC maturation.  相似文献   

5.
Vaccination with naked DNA encoding a specific allergen has been shown previously to prevent, but not reverse, the development of allergen-induced airway hyperresponsiveness (AHR). To enhance the effectiveness of DNA vaccine therapies and make possible the treatment of established AHR, we developed a DNA vaccination plasmid containing OVA cDNA fused to IL-18 cDNA. Vaccination of naive mice either with this fusion DNA construct or with an OVA cDNA-containing plasmid protected the mice from the subsequent induction of AHR. Protection from AHR correlated with increased IFN-gamma production and reduced OVA-specific IgE production. The protection appeared to be mediated by IFN-gamma and CD8(+) cells because treatment of mice with neutralizing anti-IFN-gamma mAb or with depleting anti-CD8 mAb abolished the protective effect. Moreover, vaccination of mice with preexisting AHR with the OVA-IL-18 fusion DNA, but not with the OVA cDNA plasmid, reversed established AHR, reduced allergen-specific IL-4, and increased allergen-specific IFN-gamma production. Thus, combining IL-18 cDNA with OVA cDNA resulted in a vaccine construct that protected against the development of AHR, and that was unique among cDNA constructs in its capacity to reverse established AHR.  相似文献   

6.
Muno D  Kominami E  Mizuochi T 《FEBS letters》2000,478(1-2):178-182
The phagosome fraction derived from a murine macrophage cell line (J774.1), which had internalized ovalbumin (OVA)-coated latex beads, was isolated. The peptides recovered from the phagosome fraction were separated on reverse phase HPLC and each fraction was analyzed for the content of either major histocompatibility complex (MHC) class I- or class II-restricted OVA-derived peptide. Both peptides were detected in the phagosome fraction after less than 15 min of internalization. It was also indicated that phagosomes degrade OVA protein into both MHC class I- and class II-restricted antigenic peptides by employing the same types of cathepsins. Furthermore, the results suggest that the MHC class I-restricted peptide rapidly exits from the phagosome to the cytosol. These findings illustrate a potential role for phagosomes not only in MHC class II-restricted but also in MHC class I-restricted exogenous antigen presentation pathways. Our results also point to the vital role of phagosomes in non-cytosolic antigen presentation pathway, in which further degradation of antigens by the proteasome is dispensable.  相似文献   

7.
ABSTRACT

We have previously shown that liposome-mediated plasmid DNA immunisation may be a preferred alternative to the use of naked DNA. Lipodine? DNA formulations consist of liposomes containing entrapped DNA plasmid by the dehydration–rehydration (DRV) method. Such liposome formulations are distinct from liposomes with externally complexed DNA in that the majority of the DNA is “internal” to the liposome structure and hence protected from DNAase degradation. Previous studies on the immune response induced by DNA vaccines entrapped in Lipodine? have focused on the humoural response. In the present study, we have expanded the analysis profile in order to include the cytotoxic T lymphocyte (CTL) component of the immune response. We have analysed the immune response induced by DNA entrapped in Lipodine? compared to that induced by DNA alone when delivered subcutaneously, a route of administration not normally inducing significant plasmid DNA mediated immune activation. Our results indicate that delivery of a small dose of plasmid DNA in Lipodine? results in an improved antibody response to the plasmid encoded antigen and a strong antigen specific CTL response compared to that induced by DNA delivered alone.  相似文献   

8.
DNA vaccination with mammalian-expressible plasmid DNA encoding protein antigens is known to be an effective means to elicit cell-mediated immunity, sometimes in the absence of a significant antibody response. This may be contrasted with protein vaccination, which gives rise to antibody responses with little evidence of cell-mediated immunity. This has led to considerable interest in DNA vaccination as a means to elicit cell-mediated immune responses against conserved viral antigens or intracellular cancer antigens, for the purpose of therapeutic vaccination. However, almost all current vaccines are used prophylactically and work by producing antibodies rather than cell mediated immune responses. In the present study we have therefore explored the combination of DNA and protein forms of an antigen using two exemplary prophylactic vaccine antigens, namely inactivated influenza virion and hepatitis-B surface antigen. We studied the effects of various combinations of DNA and protein on the antibody response. Co-administration of soluble forms of DNA and protein representations of the same antigen gave rise to the same level of antibody response as if protein were administered alone. In contrast, we found that when these antigens are entrapped in the same liposomal compartment, that there was a strong synergistic effect on the immune response, which was much greater than when either antigen was administered alone, or in various other modes of combination (e.g. co-administration as free entities, also pooled liposomal formulations where the two materials were contained in separate liposomal vehicles in the same suspension). The synergistic effect of liposomally co-entrapped DNA and protein exceeded, markedly, the well known adjuvant effects of plasmid DNA and liposomes. We have termed this new approach to vaccination ‘co-delivery’ and suggest that it may derive from the simultaneous presentation of antigen via MHC class-I (DNA) and MHC class-II (protein) pathways to CD8+ and CD4+ cells at the same antigen presenting cell – a mode of presentation that would commonly occur with live viral pathogens. We conclude that co-delivery is a very effective means to generate protective antibody responses against viral pathogens.  相似文献   

9.
Plasmid DNA (pDNA) is very important in non-viral gene therapy and DNA vaccination. Unmethylated CpG motifs in bacterial DNA, but not in vertebrate DNA, are known to trigger an inflammatory response, which inhibits gene expression while improving immunological consequences. In this report, we investigated the cytokine secretion induced by pDNA/cationic liposome complexes using murine macrophages. Naked CpG DNA induced tumor necrosis factor-alpha (TNF-alpha) secretion from the macrophages, but DNA without CpG motif did not, demonstrating that the cytokine induction was mediated by CpG motifs. pDNA complexed with cationic liposomes, but not the cationic liposomes alone, produced a significant amount of TNF-alpha from the macrophages. Surprisingly, methylated pDNA and calf thymus DNA complexed with the cationic liposomes were also able to induce TNF-alpha production, indicating that these responses were not dependent on CpG motifs. Taken together, the present study demonstrated that for the first time DNA can stimulate murine macrophages in a CpG motif-independent manner when it is complexed with the cationic liposomes.  相似文献   

10.
Several liposomes containing ovalbumin (OVA), a model antigen, with different lipid compositions were prepared in order to evaluate their ability to induce oral tolerance. Oral administration of these liposomal OVAs induced suppression of the proliferative responses of popliteal lymph node cells from the treated mice to OVA, suggesting that these treated mice were tolerized. The efficiency of the induction of oral tolerance was affected by the liposome composition. OVA entrapment in these liposomes could modulate the tolerizing dose of OVA itself. These results suggest that some liposomes can be suitable antigen-delivery systems for modulated and/or effective induction of oral tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号