首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 698 毫秒
1.
Development of vertebrate nervous system is a complex process which involves differential gene expression and disruptions in this process or in the mature brain, may lead to neurological disorders and diseases. Extensive work that spanned several decades using rodent models and recent work on stem cells have helped uncover the intricate process of neuronal differentiation and maturation. There are various morphological changes, genetic and epigenetic modifications which occur during normal mammalian neural development, one of the chromatin modifications that controls vital gene expression are the posttranslational modifications on histone proteins, that controls accessibility of translational machinery. Among the histone modifiers, polycomb group proteins (PcGs), such as Ezh2, Eed and Suz12 form large protein complexes—polycomb repressive complex 2 (PRC2); while Ring1b and Bmi1 proteins form core of PRC1 along with accessory proteins such as Cbx, Hph, Rybp and Pcgfs catalyse histone modifications such as H3K27me3 and H2AK119ub1. PRC1 proteins are known to play critical role in X chromosome inactivation in females but they also repress the expression of key developmental genes and tightly regulate the mammalian neuronal development. In this review we have discussed the signalling pathways, morphogens and nuclear factors that initiate, regulate and maintain cells of the nervous system. Further, we have extensively reviewed the recent literature on the role of Ring1b and Bmi1 in mammalian neuronal development and differentiation; as well as highlighted questions that are still unanswered.  相似文献   

2.
3.
The Polycomb repressive complex 1 (PRC1) mediates gene silencing, in part by monoubiquitination of histone H2A on lysine 119 (uH2A). Bmi1 and Ring1b are critical components of PRC1 that heterodimerize via their N-terminal RING domains to form an active E3 ubiquitin ligase. We have determined the crystal structure of a complex between the Bmi1/Ring1b RING-RING heterodimer and the E2 enzyme UbcH5c and find that UbcH5c interacts with Ring1b only, in a manner fairly typical of E2-E3 interactions. However, we further show that the Bmi1/Ring1b RING domains bind directly to duplex DNA through a basic surface patch unique to the Bmi1/Ring1b RING-RING dimer. Mutation of residues on this interaction surface leads to a loss of H2A ubiquitination activity. Computational modelling of the interface between Bmi1/Ring1b-UbcH5c and the nucleosome suggests that Bmi1/Ring1b interacts with both nucleosomal DNA and an acidic patch on histone H4 to achieve specific monoubiquitination of H2A. Our results point to a novel mechanism of substrate recognition, and control of product formation, by Bmi1/Ring1b.  相似文献   

4.
DMAP1 (DNMT1-associated protein 1) is a member of the TIP60-p400 complex that maintains embryonic stem (ES) cell pluripotency and a complex containing the somatic form of DNA methyltransferase 1 (DNMT1s). DMAP1 interacts with DNMT1s through a domain that is absent in Dnmt1(V)(/)(V) mice expressing just the oocyte form (DNMT1o). A Dmap1-null allele was generated to study the role of DMAP1 in development. Consistent with the phenotypes of loss of other members of the TIP60-p400 complex, Dmap1(-/-) mice died during preimplantation in both Dnmt1(+/+) and Dnmt1(V)(/)(V) backgrounds. Unexpectedly, in the Dnmt1(V)(/)(V) background, Dmap1(+/-) parents produced mainly Dmap1(+/-) mice. Most Dmap1(+/+) progeny died during midgestation, with loss of DNA methylation on imprinted genes, suggesting that DMAP1 influences maintenance methylation mediated by DNMT1o. In this regard, a DMAP1-DNMT1o complex was detected in ES cells when DNMT1o was stably expressed but not when transiently expressed, indicating a novel interaction between DMAP1 and DNMT1o. These results suggest that DMAP1-DNMT1s and DMAP1-DNMT1o interactions are essential for normal development and that DMAP1-DNMT1o complexes are not readily formed in the embryo. Therefore, DMAP1 mediates distinct preimplantation epigenetic reprogramming processes: TIP60-p400 nucleosome remodeling and DNMT1 maintenance methylation.  相似文献   

5.
Wu KJ  Yang MH 《Bioscience reports》2011,31(6):449-455
EMT (epithelial-mesenchymal transition), a major mechanism of cancer metastasis, is a process that generates cells with stem-like properties. These stem-like cells in tumours are described as cancer stem cells. The link between EMT and cancer stemness is well documented without detailed mechanistic proof. Bmi1 belongs to the PRC1 (polycomb repressive complex 1) maintaining self-renewal and stemness together with EZH2 (enhancer of zeste homologue 2), which is a component of PRC2. Bmi1 is frequently overexpressed in different types of human cancers. Recent demonstration of an EMT regulator, Twist1, directly regulating the expression of Bmi1 provides a mechanistic explanation of the relationship between EMT and cancer stemness. The functional interdependence between Twist1 and Bmi1 provides a fresh insight into the common mechanism mediating EMT and cancer stemness. This observation is also confirmed using head and neck cancer patient samples. These results provide a critical mechanism of Twist1-induced EMT and cancer stemness in cancer cells through chromatin remodelling. The role of hypoxia and microRNAs in regulating EMT and cancer stemness is also discussed.  相似文献   

6.
7.
8.
Polycomb group proteins Ring1b and Bmi1 (B-cell-specific Moloney murine leukaemia virus integration site 1) are critical components of the chromatin modulating PRC1 complex. Histone H2A ubiquitination by the PRC1 complex strongly depends on the Ring1b protein. Here we show that the E3-ligase activity of Ring1b on histone H2A is enhanced by Bmi1 in vitro. The N-terminal Ring-domains are sufficient for this activity and Ring1a can replace Ring1b. E2 enzymes UbcH5a, b, c or UbcH6 support this activity with varying processivity and selectivity. All four E2s promote autoubiquitination of Ring1b without affecting E3-ligase activity. We solved the crystal structure of the Ring-Ring heterodimeric complex of Ring1b and Bmi1. In the structure the arrangement of the Ring-domains is similar to another H2A E3 ligase, the BRCA1/BARD1 complex, but complex formation depends on an N-terminal arm of Ring1b that embraces the Bmi1 Ring-domain. Mutation of a critical residue in the E2/E3 interface shows that catalytic activity resides in Ring1b and not in Bmi1. These data provide a foundation for understanding the critical enzymatic activity at the core of the PRC1 polycomb complex, which is implicated in stem cell maintenance and cancer.  相似文献   

9.
The essential histone variant H2A.Z localises to both active and silent chromatin sites. In embryonic stem cells (ESCs), H2A.Z is also reported to co-localise with polycomb repressive complex 2 (PRC2) at developmentally silenced genes. The mechanism of H2A.Z targeting is not clear, but a role for the PRC2 component Suz12 has been suggested. Given this association, we wished to determine if polycomb functionally directs H2A.Z incorporation in ESCs. We demonstrate that the PRC1 component Ring1B interacts with multiple complexes in ESCs. Moreover, we show that although the genomic distribution of H2A.Z co-localises with PRC2, Ring1B and with the presence of CpG islands, H2A.Z still blankets polycomb target loci in the absence of Suz12, Eed (PRC2) or Ring1B (PRC1). Therefore we conclude that H2A.Z accumulates at developmentally silenced genes in ESCs in a polycomb independent manner.  相似文献   

10.
Wu X  Gong Y  Yue J  Qiang B  Yuan J  Peng X 《Nucleic acids research》2008,36(11):3590-3599
An intricate interplay between DNA methylation and polycomb-mediated gene silencing has been highlighted recently. Here we provided evidence that Nervous System Polycomb 1 (NSPc1), a BMI1 homologous polycomb protein, plays important roles in promoting H2A ubiquitination and cooperates with DNA methylation in HOX gene silencing. We showed that NSPc1 stimulates H2A ubiquitination in vivo and in vitro through direct interaction with both RING2 and H2A. RT-PCR analysis revealed that loss of NSPc1, EZH2 or DNA methyltransferase 1 (Dnmt1), or inhibition of DNA methylation in HeLa cells de-represses the expression of HOXA7. Chromatin immunoprecipitation (ChIP) assays demonstrated that NSPc1, EZH2 and Dnmt1 bind to the promoter of HOXA7, which is frequently hypermethylated in tumors. Knockdown of NSPc1 results in significant reduction of H2A ubiquitination and DNA demethylation as well as Dnmt1 dissociation in the HOXA7 promoter. Meanwhile Dnmt1 deficiency affects NSPc1 recruitment and H2A ubiquitination, whereas on both cases EZH2-mediated H3K27 trimethylation remains unaffected. When EZH2 was depleted, however, NSPc1 and Dnmt1 enrichment was abolished concomitant with local reduction of H3K27 trimethylation, H2A ubiquitination and DNA methylation. Taken together, our findings indicated that NSPc1-mediated H2A ubiquitination and DNA methylation, both being directed by EZH2, are interdependent in long-term target gene silencing within cancer cells.  相似文献   

11.
12.
Polycomb-repressive complex 1 (PRC1) has a central role in the regulation of heritable gene silencing during differentiation and development. PRC1 recruitment is generally attributed to interaction of the chromodomain of the core protein Polycomb with trimethyl histone H3K27 (H3K27me3), catalyzed by a second complex, PRC2. Unexpectedly we find that RING1B, the catalytic subunit of PRC1, and associated monoubiquitylation of histone H2A are targeted to closely overlapping sites in wild-type and PRC2-deficient mouse embryonic stem cells (mESCs), demonstrating an H3K27me3-independent pathway for recruitment of PRC1 activity. We show that this pathway is mediated by RYBP-PRC1, a complex comprising catalytic subunits of PRC1 and the protein RYBP. RYBP-PRC1 is recruited to target loci in mESCs and is also involved in Xist RNA-mediated silencing, the latter suggesting a wider role in Polycomb silencing. We discuss the implications of these findings for understanding recruitment and function of Polycomb repressors.  相似文献   

13.
14.
Human CCAAT/enhancer-binding protein delta (CEBPD) has been reported as a tumor suppressor because it both induces growth arrest involved in differentiation and plays a crucial role as a regulator of pro-apoptotic gene expression. In this study, CEBPD gene expression is down-regulated, and "loss of function" alterations in CEBPD gene expression are observed in cervical cancer and hepatocellular carcinoma. Suppressor of zeste 12 (SUZ12), a component of the polycomb repressive complex 2 (PRC2), silences CEBPD promoter activity, enhancing the methylation of exogenous CEBPD promoter through the proximal CpG islands. Moreover, this molecular approach is consistent with the opposite mRNA expression pattern between SUZ12 and CEBPD in cervical cancer and hepatocellular carcinoma patients. We further demonstrated that Yin-Yang-1 (YY1) physically interacts with SUZ12 and can act as a mediator to recruit the polycomb group proteins and DNA methyltransferases to participate in the CEBPD gene silencing process. Taking these results into consideration, we not only demonstrate the advantage of SUZ12-silenced CEBPD expression in tumor formation but also clarify an in vivo evidence for YY1-mediated silencing paths of SUZ12 and DNA methyltransferases on the CEBPD promoter.  相似文献   

15.
The polycomb repressive complex 1 (PRC1), containing the core BMI1 and RING1A/B proteins, mono-ubiquitinylates histone H2A (H2Aub) and is associated with silenced developmental genes at facultative heterochromatin. It is, however, assumed that the PRC1 is excluded from constitutive heterochromatin in somatic cells based on work performed on mouse embryonic stem cells and oocytes. We show here that BMI1 is required for constitutive heterochromatin formation and silencing in human and mouse somatic cells. BMI1 was highly enriched at intergenic and pericentric heterochromatin, co-immunoprecipitated with the architectural heterochromatin proteins HP1, DEK1, and ATRx, and was required for their localization. In contrast, BRCA1 localization was BMI1-independent and partially redundant with that of BMI1 for H2Aub deposition, constitutive heterochromatin formation, and silencing. These observations suggest a dynamic and developmentally regulated model of PRC1 occupancy at constitutive heterochromatin, and where BMI1 function in somatic cells is to stabilize the repetitive genome.  相似文献   

16.
Polycomb group proteins (PcGs) generate chromatin-modifying complexes that regulate gene expression. PcGs are categorized into two major groups, polycomb repressive complex 1 (PRC1) and 2 (PRC2), which have classically been thought to function together. Here we discuss recent data challenging this model indicating that the distinct subunit composition of PRC1 confers specific and nonoverlapping functions in embryonic and adult stem cells.  相似文献   

17.
18.
19.
Role of Bmi1 in H2A ubiquitylation and Hox gene silencing   总被引:1,自引:0,他引:1  
Posttranslational histone modifications play a crucial role in the regulation of chromatin structure and gene activity. In previous studies, we identified the histone H2A ubiquitin ligase as Ring2, together in a complex with Ring1, Bmi1, and HPH2 (human polyhomeotic 2). We report here that the oncogene Bmi1 stimulates H2A ubiquitylation both in vitro and in vivo and that Bmi1-regulated H2A ubiquitylation is required for Hox gene silencing and normal cell growth. Our studies indicate that Bmi1 maintains the integrity of the complex through simultaneous interactions with the other subunits. We reconstituted the functional human H2A ubiquitin ligase complex and a panel of subcomplexes of different subunits. Comparisons of the H2A ubiquitin ligase activities of these different complexes revealed that Bmi1 stimulates the H2A ubiquitin ligase activity of Ring2 (and Ring1). Additionally, we demonstrated that the HoxC5 gene is regulated by ubiquitylated H2A in HeLa cells and that ubiquitylated H2A is localized on 5' regulatory regions of the HoxC5 gene. The role of Bmi1 in H2A ubiquitylation and HoxC5 gene expression in vivo was analyzed by RNA interference experiments. Knockdown of Bmi1 causes a global and loci-specific loss of H2A ubiquitylation, up-regulation of the HoxC5 gene, and slower cell growth. Intriguingly, Ring2 binds to its target regions in Bmi1 knockdown cells. Therefore, our studies reveal that Bmi1 is required for H2A ubiquitylation and suggest that H2A ubiquitylation regulates Bmi1-mediated gene expression.  相似文献   

20.
Cholangiocarcinoma (CCA) is a mortal cancer with gradually increasing incidences all over the world, whereas effective diagnosis and treatment for this disease are still lacking. As a classical long noncoding RNA (lncRNA), maternally expressed gene 3 (MEG3) has been reported to exhibit pivotal regulatory roles in the occurrence and development of various digestive system tumors. Nevertheless, the clinical relevance and biological function of MEG3 in CCA remain largely unclear. In this study, MEG3 expression was significantly downregulated in both CCA tissues and cells in comparison with that in nontumor controls, respectively, and this downexpression was prominently associated with advanced TNM stage, lymph node invasion, and poor survival. Moreover, decreased MEG3 was an independent forecaster of poor prognosis for CCA patients. Functionally, MEG3 overexpression inhibited CCA growth in vitro and in vivo. Enhanced MEG3 also suppressed migration and invasion of CCLP-1 and QBC939 cells by reversing epithelial-mesenchymal transition (EMT) process. On the contrary, the proliferation, metastasis, and EMT were facilitated via knocking down MEG3. In addition, the expression of B lymphoma Mo-MLV insertion region 1 (Bmi1) and RING finger protein 2 was impacted by gain or loss of MEG3, furthermore, the malignant processes induced by MEG3 knockdown were rescued by means of silencing Bmi1. These data suggested that MEG3 caused tumor suppressive effects partly through mediating polycomb repressive complex 1. Our findings elucidate that MEG3 exerts critical functions in CCA development and likely acts as a promising tumor indicator or intervention target for CCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号