首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

2.
Successful application of microorganisms to heavy metal remediation depends on their resistance to toxic metals. This study contrasted the differences of tolerant mechanisms between Pb2+ and Cd2+ in Enterobacter sp. Microbial respiration and production of formic acid showed that Enterobacter sp. had a higher tolerant concentration of Pb (>1000 mg l−1) than Cd (about 200 mg l−1). Additionally, SEM confirmed that most of Pb and Cd nanoparticles (NPs) were adsorbed onto cell membrane. The Cd stress, even at low concentration (50 mg l−1), significantly enlarged the sizes of cells. The cellular size raised from 0.4 × 1.0 to 0.9 × 1.6 μm on average, inducing a platelet-like shape. In contrast, Pb cations did not stimulate such enlargement even up to 1000 mg l−1. Moreover, Cd NPs were adsorbed homogeneously by almost all the bacterial cells under TEM. However, only a few cells work as ‘hot spots’ on the sorption of Pb NPs. The heterogeneous sorption might result from a ‘self-sacrifice’ mechanism, i.e., some cells at a special life stage contributed mostly to Pb sorption. This mechanism, together with the lower mobility of Pb cations, caused higher microbial tolerance and removal efficiency towards Pb2+. This study sheds evident contrasts of bacterial resistance to the two most common heavy metals.  相似文献   

3.
《Process Biochemistry》2010,45(8):1415-1421
The fingerprints of extracellular polymeric substances (EPS) extracted from different types of biomass used for wastewater treatment (i.e., activated sludge, filamentous activated sludge, anaerobic granular sludge, anaerobic flocculated sludge) were studied by size exclusion chromatography (SEC) with Amersham Biosciences Superdex 200 10/300 GL column with a theoretical resolving range of 10–600 kDa. A new mobile phase, which does not display binding properties for multivalent cations, was previously optimized. This mobile phase contained 75 mM Hepes buffer at pH 7 with 15% acetonitrile (v/v) and was selected to minimize ionic and hydrophobic interactions between the molecules that make up the EPS and the column packing.When EPS extracted from similar sludges is analyzed using different mobile phases, the number of chromatographic peaks obtained is quite similar, and differences are mainly observed in the relative absorbance of the chromatographic peaks. However, very different chromatograms (number and relative absorbance of chromatographic peaks) are obtained for EPS extracted from different types of sludges. Furthermore, when dysfunctions, such as filamentous bulking in the activated sludge, occur in a bioreactor, they also induce strong variations in chromatographic profiles.  相似文献   

4.
The extracellular polymeric substances (EPS) extracted from three granular and one flocculant anaerobic sludges were characterised by size exclusion chromatography (SEC) using two serially linked chromatographic columns in order to obtain more detailed chromatograms. A Superdex peptide 10/300 GL (0.1–7 kDa) and Superdex 20010/300GL (10–600 kDa) from Amersham Biosciences were used in series with a mobile phase at pH 7 with an ionic strength of 0.223 M (phosphate buffer 50 mM and NaCl 150 mM). A part of the EPS molecules displays hydrophobic and/or ionic interactions with the column packing. Interactions could be modified by changing the mobile phase ionic strength or polarity (addition of acetonitrile). The detection wavelength (210 or 280 nm) affects strongly the EPS chromatogram. For a sludge originating from the same type of biofilms (i.e., anaerobic granules), the differences in EPS fingerprints are mainly due to differences in the absorbance of the chromatographic peaks, linked to EPS molecules content and composition. The EPS fingerprint changes significantly when the EPS originate from another type of anaerobic sludges. In addition, EPS fingerprints were affected by the extraction method used (centrifugation only; heat and centrifugation or cationic exchange resin and centrifugation). This phenomenon was observed mainly for the largest and smallest molecules and molecules which display interactions with column packing.  相似文献   

5.
6.
Staphylococcus aureus pI258 CadC is an extrachromosomally encoded metalloregulatory repressor protein from the ArsR superfamily which negatively regulates the expression of the cad operon in a metal-dependent fashion. The metalloregulatory hypothesis holds that direct binding of thiophilic divalent cations including Cd(II), Pb(II), and Zn(II) by CadC allosterically regulates the DNA binding activity of CadC to the cad operator/promoter (O/P). This report presents a detailed characterization of the metal binding and DNA binding properties of wild-type CadC. The results of analytical ultracentrifugation experiments suggest that both apo- and Cd(1)-CadC are stable or weakly dissociable homodimers characterized by a K(dimer) = 3.0 x 10(6) M(-1) (pH 7.0, 0.20 M NaCl, 25.0 degrees C) with little detectable effect of Cd(II) on the dimerization equilibrium. As determined by optical spectroscopy, the stoichiometry of Cd(II) and Pb(II) binding is approximately 0.7-0.8 mol/mol of wild-type CadC monomer. Chelator (EDTA) competition binding isotherms reveal that Cd(II) binds very tightly, with K(Cd) = 4.3 (+/-1.8) x 10(12) M(-1). The results of UV-Vis and X-ray absorption spectroscopy of the Cd(1) complex are consistent with a tetrathiolate (S(4)) complex formed by four cysteine ligands. The (113)Cd NMR spectrum reveals a single resonance of delta = 622 ppm, consistent with an S(3)(N,O) or unusual upfield-shifted S(4) complex. The Pb(II) complex reveals two prominent absorption bands at 350 nm (epsilon = 4000 M(-1) cm(-1)) and 250 nm (epsilon = 41 000 M(-1) cm(-1)), spectral properties consistent with three or four thiolate ligands to the Pb(II) ion. The change in the anisotropy of a fluorescein-labeled oligonucleotide containing the cad O/P upon binding CadC and analyzed using a dissociable CadC dimer binding model reveals that apo-CadC forms a high-affinity complex [K(a) = (1.1 +/- 0.3) x 10(9) M(-1); pH 7.0, 0.40 M NaCl, 25 degrees C], the affinity of which is reduced approximately 300-fold upon the binding of a single molar equivalent of Cd(II) or Pb(II). The implications of these findings on the mechanism of metalloregulation are discussed.  相似文献   

7.
This paper describes activation of pine cone with Fenton reagent and determines the removal of Cd(II) and Pb(II) ions from aqueous solution. Changes of the surface properties of adsorbent materials were determined by the FT-IR and SEM analysis after activation of pine cone. The effect of Fe(2+)/H(2)O(2) ratio, ORP, pH and contact time were determined. Different adsorption isotherms were also obtained using concentrations of heavy metal ions ranging from 0.1 to 150mgL(-1). The adsorption process follows pseudo-first-order reaction kinetics and follows the Langmuir adsorption isotherm. The study discusses thermodynamic parameters, including changes in Gibbs free energy, entropy, and enthalpy, for the adsorption of Cd(II) and Pb(II) on activated cone, and revealed that the adsorption process was spontaneous and exothermic under natural conditions. The maximum removal efficiencies were obtained as 91% and 89% at pH 7 with 90 and 105-min contact time for Cd(II) and Pb(II), respectively.  相似文献   

8.
Extraction of extracellular polymeric substances (EPS) of sludges   总被引:54,自引:0,他引:54  
The efficacies of extracting extracellular polymeric substances (EPS) from aerobic, acidogenic and methanogenic sludges using EDTA, cation exchange resin and formaldehyde under various conditions were compared. Results show that formaldehye plus NaOH was most effective in extracting EPS for all sludges; only 1.1-1.2% of DNA in the sludge samples were detected, suggesting the EPS extracted were not contaminated by intracellular substances. For each gram of volatile solids, formaldehyde-NaOH extracted 165, 179 and 102 mg of EPS from aerobic, acidogenic and methanogenic sludges, respectively. All EPS were mainly composed of carbohydrate, protein and humic substance, plus small quantities of uronic acid and DNA. Carbohydrate was predominant in the acidogenic sludge (62% in the EPS extracted by formaldehyde-NaOH), whereas protein was predominant in the methanogenic sludge (41%). Humic substance, which has often been overlooked, accounted for 30.6, 8.4 and 22.8% of the extracted EPS from aerobic, acidogenic and methanogenic sludges, respectively. However, judging from EPS quantities estimated from confocal laser scanning microscopic observations, formaldehyde-NaOH extracted only a limited portion of EPS. Optimization of extraction procedures and/or development of a more effective extraction method are warranted.  相似文献   

9.
The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.  相似文献   

10.
The potential of nonliving biomass of Hydrilla verticillata to adsorb Pb(II) from an aqueous solution containing very low concentrations of Pb(II) was determined in this study. Effects of shaking time, contact time, biosorbent dosage, pH of the medium, and initial Pb(II) concentration on metal-biosorbent interactions were studied through batch adsorption experiments. Maximum Pb(II) removal was obtained after 2 h of shaking. Adsorption capacity at the equilibrium increased with increasing initial Pb(II) concentration, whereas it decreased with increasing biosorbent dosage. The optimum pH of the biosorption was 4.0. Surface titrations showed that the surface of the biosorbent was positively charged at low pH and negatively charged at pH higher than 3.6. Fourier transform infrared (FT-IR) spectra of the biosorbent confirmed the involvement of hydroxyl and C?O of acylamide functional groups on the biosorbent surface in the Pb(II) binding process. Kinetic and equilibrium data showed that the adsorption process followed the pseudo-second-order kinetic model and both Langmuir and Freundlich isothermal models. The mean adsorption energy showed that the adsorption of Pb(II) was physical in nature. The monolayer adsorption capacity of Pb(II) was 125 mg g?1. The desorption of Pb(II) from the biosorbent by selected desorbing solutions were HNO3 > Na2CO3 > NaOH > NaNO3.  相似文献   

11.
This paper reports the sorption of three metallic ions, namely Cr(VI), Cu(II) and Pb(II) in aqueous solution by a consortium culture (CC) comprising an acclimatised mixed bacterial culture collected from point and non-point sources. Metal sorption capability of growing and non-growing cells at initial pH of between 3 and 8 in the 1-100mg/L concentration range were studied based on Q(max) and K(f) values of the Langmuir and linearised Freundlich isotherm models, respectively. Maximal metal loading was generally observed to be dependent on the initial pH. Growing cells displayed significant maximal loading (Q(max)) for Pb(II) (238.09 mg/g) and Cu(II) (178.87 mg/g) at pH 6 and at pH 7 for Cr(VI) (90.91 mg/g) compared to non-growing cells (p < 0.05). At the pH range of 6-8, growing cells showed higher loading capacity compared to non-growing cells i.e. 38-52% for Cr, 17-28% for Cu and 3-17% for Pb. At lower metal concentrations and at more acidic pH (3-4) however, non-growing cells had higher metal loading capacity than growing cells. The metal sorption capacity for both populations were as follows: Pb(II) > Cu(II) > Cr(VI).  相似文献   

12.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

13.
To study the effect of extraction protocols on extracellular polymeric substances (EPS) metal binding ability, EPS from two activated sludges were extracted by eight extraction protocols: three chemical treatments, four physical treatments and a control. Two pKa, for each EPS, were determined: pKa1 may be specific for carboxyl and phosphoric and pKa2 may be attributed to phenolic and amino functional groups according to EPS composition and IR spectra. EPS pKa values could be affected by the presence of extraction reagents and/or the modifications of EPS by extraction reagents.Complexation study performed at pH 7 by a polarographic method has always showed a greater affinity of EPS for Pb2+ than for Cd2+. The complexation properties of EPS extracted by chemical methods were greatly modified. Concerning EPS extracted by physical methods, their complexation properties were close except for EPS obtained by heating. Standardized extraction methods must be established as a function of the aims of the EPS study.  相似文献   

14.
The biosorption of several toxic heavy metals (Pb, Cd, Co, Ni, Zn and Cu) by the exopolysaccharide (EPS) produced by Paenibacillus jamilae, a potential biosorbent for metal remediation and recovery was studied. Firstly, the biochemical composition of this bacterial polymer was determined. Glucose was the most abundant neutral sugar, followed by galactose, rhamnose, fucose and mannose. The polymer presented a high content of uronic acids (28.29%), which may serve as binding sites for divalent cations. The presence of carboxylic groups was also detected by infrared spectroscopy. The EPS presented an interesting affinity for Pb in comparison with the other five metals. Lead biosorption (303.03 mg g−1) was tenfold higher (in terms of mg of metal adsorbed per gram of EPS) than the biosorption of the rest of metals. Biosorption kinetics, the effect of pH and the effect of competitive biosorption were determined. Finally, we found that the EPS was able to precipitate Fe(III), but the EPS-metal precipitate did not form with Fe(II), Pb(II), Cd(II), Co(II), Ni(II), Cu(II) and Zn(II).  相似文献   

15.
Dried biomass of Spirogyra neglecta rapidly sorbed the test metals and the process became saturated in 10-20min. Maximum sorption of Pb(II) [116.1mgg(-1)] and Cu(II) [115.3mgg(-1)] occurred at 0.1gl(-1) biomass and 100mgl(-1) metal concentration in the solution. Sorption of Cu(II) and Pb(II) occurred optimally at pH 4.5 and 5.0, respectively. Lead(II) and Cu(II) sorption were lesser from binary metal solution than from single metal solution. Lead(II) more severely inhibited Cu(II) sorption than vice versa thus reflecting greater affinity of Pb(II) for the biomass. NaOH pretreatment slightly enhanced the metal removal ability of the biomass. During repeated sorption/desorption cycles, Pb(II) and Cu(II) sorption decreased by 11% and 27%, respectively, at the end of the fifth cycle due inter alia to 10-15% loss of biomass. Nevertheless, Spirogyra appears to be a good sorbent for removing metals Cu(II) and Pb(II) from wastewaters.  相似文献   

16.
The newly synthesised metal ion activated molecular receptor [Cd{1,4,7,10-tetrakis((R)-(−)-2-hydroxy-3-phenylpropyl)-1,4,7,10-tetraazacyclododecane}](ClO4)2 (hereafter [CdL](ClO4)2) acts as a molecular receptor for acetonitrile. The receptor was characterised by X-ray crystallography in its metal free form, as its Cd(II) complex with no included molecule, as its Cd(II) complex with an included acetonitrile molecule and, for comparative purposes, as its Zn(II) complex with a partially included acetonitrile molecule. These structural studies demonstrated that the Cd(II) complex is eight-coordinate, with the potential to form a well defined hydrophobic cavity that can contain one acetonitrile molecule through four hydrogen-bonds, whereas the Zn(II) complex is six-coordinate, with a less rigidly constituted binding cavity, such that when solvated by acetonitrile the solvating molecule is retained by only a single hydrogen-bond.  相似文献   

17.
18.
19.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

20.
The novel biosorbent silk cotton hull, an agrowaste material, has been successfully utilized for the removal of cadmium(II) from aqueous solutions. The adsorption of cadmium onto three kinds of activated biosorbent has been studied: modified by concentrated sulfuric acid alone (AC), a mixture of concentrated sulfuric acid and hydrogen peroxide (AC1), and a mixture of concentrated sulfuric acid and ammonium persulfate (AC2). The adsorption studies were carried out to optimize the process parameters such as pH, adsorbent dosage, contact time, and initial metal ion concentration. Maximum metal removal was observed at pH 7.0 with a contact time of 90 min at stirring speed of 200 rpm with an adsorbent dosage of 4.0 g L?1. The sorption isotherms were studied using the Langmuir, Freundlich, and Tempkin isotherm models. The maximum adsorption capacities were 100.00, 142.86, and 142.87 mg g?1 for AC, AC1, and AC2, respectively. Accordingly, the surface modification of the activated carbons AC1 and AC2 enhanced cadmium removal greatly. The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. The sorption mechanism is discussed in terms of the activated surface properties. A relationship between the oxygen content and sorption was found in this novel material. Desorption experiments were carried out using hydrochloric acid with a view to generate the spent adsorbent and to recover the adsorbed metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号