首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A perfusion basket reactor (BR) was developed for the continuous utilization of insolubilized laccase as cross‐linked enzyme aggregates (CLEAs). The BR consisted of an unbaffled basket made of a metallic filtration module filled with CLEAs and continuously agitated by a 3‐blade marine propeller. The agitation conditions influenced both the apparent laccase activity in the reactor and the stability of the biocatalyst. Optimal laccase activity was obtained at a rotational speed of 12.5 rps and the highest stability was reached at speeds of 1.7 rps or lower. The activity and stability of the biocatalyst were affected drastically upon the appearance of vortices in the reaction medium. This reactor was used for the continuous elimination of the endocrine disrupting chemicals (EDCs) nonylphenol (NP), bisphenol A (BPA), and triclosan (TCS). Optimization of EDC elimination by laccase CLEAs as a function of temperature and pH was achieved by response surface methodology using a central composite factorial design. The optimal conditions of pH and temperature were, respectively, 4.8 and 40.3°C for the elimination of p353NP (a branched isomer of NP), 4.7 and 48.0°C for BPA, and 4.9 and 41.2°C for TCS. Finally, the BR was used for the continuous elimination of these EDCs from a 5 mg L?1 aqueous solution using 1 mg of CLEAs at pH 5 and room temperature. Our results showed that at least 85% of these EDCs could be eliminated with a hydraulic retention time of 325 min. The performances of the BR were quite stable over a 7‐day period of continuous treatment. Furthermore, this system could eliminate the same EDCs from a 100 mg L?1 solution. Finally, a mathematical model combining the Michaelis–Menten kinetics of the laccase CLEAs and the continuous stirred tank reactor behavior of the BR was developed to predict the elimination of these xenobiotics. Biotechnol. Bioeng. 2009;102: 1582–1592. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
A commercial laccase from Trametes versicolor was conjugated with biopolymer chitosan using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) as the cross-linking agent. Laccase-chitosan conjugation strategies were tested using different molar ratios of glucosamine monomer/protein with different molar excess ratios of EDC relative to laccase. Immobilization techniques were developed to improve the stability against thermal and chemical denaturation, storage and reusability of this biocatalyst. The conjugation resulted in a solid biocatalyst with an apparent laccase activity of ±626 U/g, 12 and 60 folds higher in the conjugation efficiency of biocatalyst relative to the immobilized and free laccase activity respectively when compared with zero EDC/laccase ratio used in conjugation solution. The conjugated laccases formed successfully eliminated the emerging pollutant triclosan (TCS) from aqueous solutions, having a higher potential to transform TCS than free laccase. UPLC-QTOF results indicate the formation of TCS oligomers. Furthermore, they are the first evidence of direct dechlorination of TCS mediated by the oxidative action of laccases.  相似文献   

3.
Laccase from Myceliophthora thermophila was immobilized by encapsulation in a sol-gel matrix based on methyltrimethoxysilane and tetramethoxysilane. The amount of laccase used for the preparation of the hydrogel was in the range 2.2-22 mg of protein/mL sol and the corresponding enzymatic activities were in the range 5.5-17.0 U/g biocatalyst. The kinetic parameters of the encapsulated laccase showed that the immobilized enzyme presented lower affinity for the substrate 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS). However, the stability of laccase was significantly enhanced after immobilization; thus, both pH and thermal stability improved about 10-30% and tolerance to different inactivating agents (NaN(3) , ZnCl(2) , CoCl(2) , CaCl(2) , methanol, and acetone) was 20-40% higher. The reusability of the immobilized laccase was demonstrated in the oxidation of ABTS for several consecutive cycles, preserving 80% of the initial laccase activity after 10 cycles. The feasibility of the immobilized biocatalyst was tested for the continuous elimination of Acid Green 27 dye as a model compound in a packed-bed reactor (PBR). Removals of 70, 58, 57, and 55% were achieved after four consecutive cycles with limited adsorption on the support: only 10-15%. Finally, both batch stirred tank reactor (BSTR) operated in several cycles and PBR, containing the solid biocatalyst were applied for the treatment of a solution containing the endocrine disrupting chemicals (EDCs): estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2). Eliminations of EDCs in the BSTR were higher than 85% and the reusability of the biocatalyst for the degradation of those estrogens was demonstrated. In the continuous operation of the PBR, E1 was degraded by 55% and E2 and EE2 were removed up to 75 and 60%, at steady-state conditions. In addition, a 63% decrease in estrogenic activity was detected.  相似文献   

4.
Abstract

The main objective of this study is the evaluation of the capability of laccase from Myceliophthora thermophila immobilized on fumed silica microparticles (fsMP) for the removal of endocrine disrupting chemicals (EDCs) in two enzymatic reactor configurations. This type of support can also be magnetized to allow the straightforward separation of the biocatalyst under a magnetic field. The support exhibited excellent biocompatibility with the enzyme, superior tolerance to pH and temperature as well as improved stability in comparison with the free enzyme, even in the presence of organic solvents and enzyme inhibitors. The technical feasibility of the removal of EDCs by immobilized laccase was assessed in two types of enzymatic reactors operated in sequential mode: a membrane reactor using fsMP-laccase and a reactor with magnetic separation using magnetized fsMP-laccase. The extent of transformation for the target compounds: bisphenol A (BPA) and 17β-estradiol (E2) was high and comparable to free laccase in both systems (up to 80%). The possibility of reusing the immobilized enzyme, especially for magnetized supports, offers an interesting approach in the development of enzyme based processes for the biotransformation of emerging pollutants.  相似文献   

5.
This work aimed at the production of stabilized derivatives of Thermomyces lanuginosus lipase (TLL) by multipoint covalent immobilization of the enzyme on chitosan-based matrices. The resulting biocatalysts were tested for synthesis of biodiesel by ethanolysis of palm oil. Different hydrogels were prepared: chitosan alone and in polyelectrolyte complexes (PEC) with κ-carrageenan, gelatin, alginate, and polyvinyl alcohol (PVA). The obtained supports were chemically modified with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to increase support hydrophobicity, followed by activation with different agents such as glycidol (GLY), epichlorohydrin (EPI), and glutaraldehyde (GLU). The chitosan-alginate hydrogel, chemically modified with TNBS, provided derivatives with higher apparent hydrolytic activity (HAapp) and thermal stability, being up to 45-fold more stable than soluble lipase. The maximum load of immobilized enzyme was 17.5 mg g−1 of gel for GLU, 7.76 mg g−1 of gel for GLY, and 7.65 mg g−1 of gel for EPI derivatives, the latter presenting the maximum apparent hydrolytic activity (364.8 IU g−1 of gel). The three derivatives catalyzed conversion of palm oil to biodiesel, but chitosan-alginate-TNBS activated via GLY and EPI led to higher recovered activities of the enzyme. Thus, this is a more attractive option for both hydrolysis and transesterification of vegetable oils using immobilized TLL, although industrial application of this biocatalyst still demands further improvements in its half-life to make the enzymatic process economically attractive.  相似文献   

6.
A thermostable laccase was isolated from a tropical white-rot fungus Polyporus sp. which produced as high as 69,738 units of laccase l−1 in an optimized medium containing 20 g of malt extract l−1, 2 g of yeast extract l−1, 1.5 mM CuSO4. The laccase was purified to electrophoretic purity with a final purification of 44.70-fold and a recovery yield of 21.04%. The purified laccase was shown to be a monomeric enzyme with a molecular mass of 60 kDa. The optimum temperature and pH value of the laccase were 75°C and pH 4.0, respectively, for 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS). The Michaelis–Menten constant (K m ) of the laccase was 18 μM for ABTS substrate. The laccase was stable at pH values between 5.5 and 7.5. About 80% of the initial enzyme activity was retained after incubation of the laccase at 70°C for 2 h, indicating that the laccase was intrinsically highly thermostable and with valuable potential applications. The laccase activity was promoted by 4.0 mM of Mg2+, Mn2+, Zn2+ and Ca2+, while inhibited by 4.0 mM of Co2+, Al3+, Cu2+, and Fe2+, showing different profiles of metal ion effects.  相似文献   

7.
In the present study, using an in vivo approach (a microdialysis technique associated to HPLC with fluorimetric detection) and in vitro purified hippocampal synaptosomes in superfusion, we investigated the glycinergic transmission in the hippocampus, focusing on the nicotinic control of glycine (GLY) release. The acute administration of nicotine in vivo was able to evoke endogenous GLY release in the rat hippocampus. The specific nicotinic agonists PHA-543613 hydrochloride (PHA543613) selective for the α7 nicotinic receptor subtype administered in vivo also elicited GLY release in a similar extent, while the α4β2 agonist 5-IA85380 dihydrochloride (5IA85380) was less effective. Nicotine elicited GLY overflow also from hippocampal synaptosomes in vitro. This overflow was Ca2+-dependent and inhibited by methyllycaconitine (MLA), but was not modified by dihydro-beta-erythroidine (DHβE, 1 μM). Choline(Ch)-evoked GLY overflow was Ca2+ dependent, unaltered in presence of DHβE and blocked by methyllycaconitine (MLA). Additionally, 5IA85380 elicited a GLY overflow, which in turn was Ca2+ dependent, was significantly inhibited by DHβE but was unaffected by MLA. The GLY overflow produced by these nicotinic agonists quantitatively resembles that evoked by 9 mM KCl. The effects of a high concentration of 5IA85380 (1 mM), in the presence of 2 μM DHβE, on the release of GLY was also studied comparatively to that on glutamate and aspartate release. The nicotinic agonist 5IA85380 tested at high concentration (1 mM) was able to produce a stimulatory effect of endogenous release of the three amino acids, even in the presence of 2 μM DHβE, indicating the existence of a DHβE resistant, α4β2 nAChR subtype with a functional role in the modulation of GLY, ASP, and GLU release. Our results show that in the rat hippocampus the release of GLY is, at least in part, of neuronal origin and is modulated by the activation of both α7 and α4β2 (low and high affinity) nAChR subtypes.  相似文献   

8.
Biological monitoring is a necessary process for risk assessment of endocrine disrupting chemicals (EDCs), particularly, bisphenol A (BPA), in breast milk, because its human risks are not clear yet, and infants, who feed on breast milk, are highly susceptible for EDCs. Concerning biological monitoring of BPA, the HPLC/FLD has been widely used before the LC/MS/MS. However, there was no report, which simultaneously evaluated the two methods in real analyses. Therefore, we analyzed BPA with LC/MS/MS and HPLC/FLD in human breast milk and conducted comparison of two methods in analyzed BPA levels. After establishing optimal condition, e.g. linearity, recovery, reproducibility and free BPA system, we analyzed BPA levels in human breast milk samples (N = 100). The LOQs were similar in the two methods, i.e. 1.8 and 1.3 ng/mL for the HPLC/FLD and LC/MS/MS assays, respectively. There were strong associations between total BPA levels with the two methods (R2 = 0.40, p < 0.01), however, only 11% of them were analyzed as similar levels with 15% CVs. In addition, the detection range of BPA was broader in the HPLC method than the LC/MS/MS method. However, the BPA levels in the HPLC/FLD analysis were lower than those in the LC/MS/MS analysis (p < 0.01). Thus, the differences in BPA levels between the two methods may come from mainly over-estimation with the LC/MS/MS method in low BPA samples and some of poor resolution with the HPLC/FLD in high BPA samples.  相似文献   

9.
Laccase from the white rot fungus Coriolopsis polyzona was immobilized for the first time through the formation of cross-linked enzyme aggregates (CLEAs). Laccase CLEAs were produced by using 1000g of polyethylene glycol per liter of enzyme solution as precipitant and 200muM of glutaraldehyde as a cross-linking agent. These CLEAs had a laccase activity of 148Ug(-1) and an activity recovery of 60.2% when using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as substrate. CLEAs formed by co-aggregation with bovine serum albumin (BSA) as a stabilizer showed lower laccase activity and affinity for ABTS than those without BSA. The CLEAs co-aggregated with BSA showed higher residual activity against a protease, NaN(3), EDTA, methanol and acetone. The thermoresistance was higher for CLEAs than for free laccase and also higher for CLEAs co-aggregated with BSA than for simple CLEAs when tested at a pH of 3 and a temperature of 40 degrees C. Finally, laccase CLEAs were tested for their capacity to eliminate the known or suspected endocrine disrupting chemicals (EDCs) nonylphenol, bisphenol A and triclosan in a fluidized bed reactor. A 100-ml reactor with 0.5mg of laccase CLEAs operated continuously at a hydraulic retention time of 150min at room temperature and pH 5 could remove all three EDCs from a 5mgl(-1) solution.  相似文献   

10.
A highly sensitive electrochemical glucose sensor has been developed by the co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto a gold electrode modified with biocompatible cyclic bisureas–gold nanoparticle conjugate (CBU–AuNP). A self-assembled monolayer of mercaptopropionic acid (MPA) and CBU–AuNP was formed on the gold electrode through a layer-by-layer assembly. This modified electrode was used for immobilization of the enzymes GOx and HRP. Both the HRP and GOx retained their catalytic activity for an extended time, as indicated by the low value of Michaelis–Menten constant. Analytical performance of the sensor was examined in terms of sensitivity, selectivity, reproducibility, lower detection limit, and stability. The developed sensor surface exhibited a limit of detection of 100 nM with a linear range of 100 nM to 1 mM. A high sensitivity of 217.5 μA mM−1 cm−2 at a low potential of −0.3 V was obtained in this sensor design. Various kinetic parameters were calculated. The sensor was examined for its practical clinical application by estimating glucose in human blood sample.  相似文献   

11.
The aim of this work was to assess the possibility of using beer spent grain (a byproduct of beer's brewing industry) as a carrier for laccase immobilization. Both adsorption (on spent grain – SG and on digested spent grain – DSG) and covalent binding (using glycidol and glycidol followed by ethylenediamine on DSG) were used. The effect of different immobilization conditions on the immobilization yields and recovered activities such as contact time, enzyme concentration and pH was evaluated. For the best conditions, immobilization yields, recovered activities and thermal, operational and storage stabilities were also evaluated. Finally, the Michaelis–Menten mechanism was applied and the parameter with respect to ABTS oxidation was determined.Enzyme immobilization on DSG led to the best enzyme activities (recovered activities as high as 90%) and to high storage and operational stabilities (10 cycles). Thermal stability was also improved and the half-life of immobilized laccase in SG increased from 0.64 h to 1.1 h at 70 °C.  相似文献   

12.
Biodegradation of two polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by a white rot fungus, Ganoderma lucidum, in broth cultures was investigated. It was found that the biomass of the organism decreased with the increase of PAH concentration in the cultures. In the cultures with 2 to 50 mg l−1 PAHs, the degradation rate constants (k1) increased with the PAH concentration, whereas, at the level of 100 mg l−1, the degradation rate constants decreased. In the presence of 20 mg l−1 PAHs, the highest degradation rates of both PAHs occurred in cultures with an initial pH of 4.0 at 30 °C. The addition of CuSO4, citric acid, gallic acid, tartaric acid, veratryl alcohol, guaiacol, 2,2′-azino-bis-(3- ethylbenzothazoline-6-sulfonate) (ABTS) enhanced the degradation of both PAHs and laccase activities; whereas the supplement of oxalate, di-n-butyl phthalate (DBP), and nonylphenol (NP) decreased the degradation of both PAHs and inhibited laccase production. In conclusion, G. lucidum is a promising white rot fungus to degrade PAHs such as phenanthrene and pyrene in the environment.  相似文献   

13.
Laccases belong to the group of multicopper oxidases that exhibit wide substrate specificity for polyphenols and aromatic amines. They are found in plants, fungi, bacteria, and insects. In insects the only known role for laccase is in cuticle sclerotization. However, extracting laccase from the insect's cuticle requires proteolysis, resulting in an enzyme that is missing its amino-terminus. To circumvent this problem, we expressed and purified full-length and amino-terminally truncated recombinant forms of laccase-2 from the tobacco hornworm, Manduca sexta. We also purified the endogenous enzyme from the pharate pupal cuticle and used peptide mass fingerprinting analysis to confirm that it is laccase-2. All three enzymes had pH optima between 5 and 5.5 when using N-acetyldopamine (NADA) or N-β-alanyldopamine-alanyldopamine (NBAD) as substrates. The laccases exhibited typical Michaelis–Menten kinetics when NADA was used as a substrate, with Km values of 0.46 mM, 0.43 mM, and 0.63 mM, respectively, for the full-length recombinant, truncated recombinant, and cuticular laccases; the apparent kcat values were 100 min−1, 80 min−1, and 290 min−1. The similarity in activity of the two recombinant laccases suggests that laccase-2 is expressed in an active form rather than as a zymogen, as had been previously proposed. This conclusion is consistent with the detection of activity in untanned pupal wing cuticle using the laccase substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Immunoblot analysis of proteins extracted from both tanned and untanned cuticle detected only a single protein of 84 kDa, consistent with the full-length enzyme. With NBAD as substrate, the full-length recombinant and cuticular laccases showed kinetics indicative of substrate inhibition, with Km values of 1.9 mM and 0.47 mM, respectively, and apparent kcat values of 200 min−1 and 180 min−1. These results enhance our understanding of cuticle sclerotization, and may aid in the design of insecticides targeting insect laccases.  相似文献   

14.
The biodegradability of several potential endocrine disrupting compounds, namely 4-n-nonylphenol (4-n-NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), bisphenol A (BPA), triclosan (TCS), di-(2-ethylhexyl)-phthalate (DEHP), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) was evaluated in this study, using OECD method 301F (manometric respirometry test) and activated sludge as inoculum. According to the results, 4-n-NP and BPA meet the strict definition of ready biodegradability and they are not expected to be persistent during the activated sludge process. Partial biodegradation was observed for DEHP (58.7+/-5.7%, n=3), TCS (52.1+/-8.5%, n=3) and NP1EO (25.9+/-8.1%, n=3), indicating their possible biodegradation in wastewater treatment systems, while no biodegradation was observed for NP2EO, PFOA and PFNA. Experiments in the co-presence of a readily biodegradable compound showed the absence of co-metabolic phenomena during 4-n-NP, BPA and TCS biodegradation. Using first order kinetics to describe biodegradation of the target compounds, half-lives of 4.3+/-0.6, 1.3+/-0.2, 1.8+/-0.5, 6.9+/-2.6 days were calculated for 4-n-NP, BPA, TCS and DEHP, respectively. Toxicity tests using marine bacterium Vibrio fischeri showed that biodegradation of 4-n-NP, NP1EO, BPA and TCS is a simultaneous detoxification process, while possible abiotic or biotic transformations of NP2EO, DEHP, PFOA and PFNA during respirometric test resulted to significant increase of their toxicities.  相似文献   

15.
The removal of toxic methyl ethyl ketone (MEK) is studied in a lab scale biofilter packed with mixture of coal and matured compost. The biofiltration operation is divided into 5 phases for a period of 60 days followed by shock loading conditions for three weeks. The maximum removal efficiency of 95% is achieved during phase II for an inlet concentration of 0.59 g m−3, and 82–91% for the inlet concentration in the range of 0.45–1.23 g m−3 of MEK during shock loads. The Michaelis–Menten kinetic constants obtained are 0.086 g m−3 h−1 and 0.577 g m−3. The obtained experimental results are validated using Ottengraf–van den Oever model for zero-order diffusion-controlled region to understand the mechanism of biofiltration. The critical inlet concentration of MEK, critical inlet load of MEK and biofilm thickness are estimated using the results obtained from model predictions.  相似文献   

16.
Blue multicopper oxidases, laccases displayed on the surface of Bacillus spores were used to decolorize a widely used textile dyestuff, indigo carmine. The laccase-encoding gene of Bacillus subtilis, cotA, was cloned and expressed in B. subtilis DB104, and the expressed enzyme was spontaneously localized on Bacillus spores. B. subtilis spores expressing laccase exhibited maximal activity for the oxidation of 2,2′-azino-bis (3-ethylthiazoline-6-sulfonate) (ABTS) at pH 4.0 and 80 °C, and for the decolorization of indigo carmine at pH 8.0 and 60 °C. The displayed enzyme retained 80% of its original activity after pre-treatment with organic solvents such as 50% acetonitrile and n-hexane for 2 h at 37 °C. The apparent Km of the enzyme displayed on spores was 443 ± 124 μM for ABTS with a Vmax of 150 ± 16 U/mg spores. Notably, 1 mg of spores displaying B. subtilis laccase (3.4 × 102 U for ABTS as a substrate) decolorized 44.6 μg indigo carmine in 2 h. The spore reactor (0.5 g of spores corresponding to 1.7 × 105 U in 50 mL) in a consecutive batch recycling mode decolorized 223 mg indigo carmine/L to completion within 42 h at pH 8.0 and 60 °C. These results suggest that laccase displayed on B. subtilis spores can serve as a powerful environmental tool for the treatment of textile dye effluent.  相似文献   

17.
18.
Densely cross-linked poly(vinylamine) microbeads (∼2 μm) were prepared by precipitation copolymerization of N-vinyl formamide and ethylene glycoldimethacrylate in acetonitrile. The formamido groups of the microbeads were hydrolyzed into amino groups. Then, amino-functionalized microbeads were used for covalent immobilization of laccase via glutaraldehyde coupling. The average amount of immobilized enzyme was 18.7 mg/g microbeads. Kinetic parameters, Vmax and Km values were determined as 20.7 U/mg protein and 2.76 × 10−2 mmol/L for free enzyme and 15.8 U/mg protein and 4.65 mmol/L for the immobilized laccase, respectively. The immobilized laccase was operated in a batch reactor for the degradation of two different benzidine based dyes (i.e., Direct Blue 1 and Direct Red 128). The laccase immobilized on the microbeads was very effective for removal of these dyes which interfere with the hormonal system.  相似文献   

19.
Homodimeric thymidine phosphorylase from Escherichia coli (TP, E.C. 2.4.2.4) was immobilized on solid support with the aim to have a stable and recyclable biocatalyst for nucleoside synthesis. Immobilization by ionic adsorption on amine-functionalized agarose and Sepabeads® resulted in a very high activity recovery (>85%). To prevent undesirable leakage of immobilized enzyme away from the support, the ionic preparations were cross-linked with aldehyde dextran (MW 20 kDa) and the influence of the dextran oxidation degree on the resulting biocatalyst activity was evaluated. Although in all cases the percentage of expressed activity after immobilization drastically decreased (≤25%), this procedure allowed to obtain an active catalyst which resulted up to 6-fold and 3-fold more stable than the soluble (non immobilized) enzyme and the just adsorbed (non cross-linked) counterpart, respectively, at pH 10 and 37 °C. No release of the enzyme from the support could be observed. Covalent immobilization on aldehyde or epoxy supports was generally detrimental for enzyme activity. Optimal TP preparation, achieved by immobilization onto Sepabeads® coated with polyethyleneimine and cross-linked, was successfully used for the one-pot synthesis of 5-fluoro-2′-deoxyuridine starting from 2′-deoxyuridine or thymidine (20 mM) and 5-fluorouracil (10 mM). In both cases, the reaction proceeded at the same rate (3 μmol min−1) affording 62% conversion in 1 h.  相似文献   

20.
In this study, we have evaluated the effect of palladium-iron bimetallic nanoparticles (nFe-Pd) on diphenyl ether (DE) degrading bacterial strain Sphingomonas sp. PH-07 as well as a sequential nano-bio hybrid process with nFe-Pd as catalytic reductant and PH-07 as biocatalyst for degradation of triclosan. Strain PH-07 grew well in the presence of nFe-Pd up to 0.1 g/L in minimal salts medium with DE as carbon source. In aqueous system, TCS (17.3 μM) was completely dechlorinated within 2 h by nFe-Pd (0.1 g/L) with concomitant release of 2-phenoxyphenol (16.8 μM) and chloride ions (46 μM). All possible dichloro- and monochloro-2-phenoxyphenol intermediates were identified by HPLC and GC-MS analyses, and the dechlorination pathway was proposed. Addition of PH-07 cells into the reactor effectively degraded the 2-phenoxyphenol. Our results reveal that strain PH-07 survives well in the presence of nFe-Pd and nFe-Pd/PH-07 hybrid treatment could be a potential strategy for degradation of TCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号