首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Spread of smooth cordgrass (Spartina alterniflora) in China is an exceptional example of unanticipated outcomes arising from intentional introductions. It has been proposed that in China, management strategies used to establish S. alterniflora inadvertently promoted evolutionary outcomes that have contributed to other Spartina invasions. In this study, we assessed whether S. alterniflora in China exhibits genetic signatures of mechanisms known to promote invasion success, including large founding populations, evolved self-fertility, ‘superior source ecotypes’, and post-introduction admixture. This involved comparing microsatellite genotype and chloroplast haplotype variation among Chinese populations to other invasive S. alterniflora populations as well as native range populations, inclusive of samples from all reported source areas. We found distinct signatures of source population contributions to Chinese populations, as well as evidence of post-introduction admixture, and no evidence of limitations from a genetic bottleneck. Measures of inbreeding were well below what has been found in other non-native populations that have evolved self-fertility. Differences in genetic diversity among sites were similar to latitudinal patterns in the native range, but could be attributable to introduction history. Comparisons to other invasive populations indicate that a combination of common and idiosyncratic processes have contributed to the success of S. alterniflora in China and elsewhere, with intentional introductions promoting mechanisms that accelerate rates of spread and widespread invasion.  相似文献   

2.
We studied the invasive warty cabbage Bunias orientalis (Brassicaceae) in three geographically distinct areas. Using inter-simple sequence repeat fingerprinting, we analyzed warty cabbages, including non-native populations, from the eastern Baltic and western Siberian regions and native populations from southwestern Russia. The eastern Baltic region and western Siberia represent the two opposite directions of B. orientalis spread in climatically different zones. The genetic structures of the native and non-native B. orientalis populations were assessed through analysis of molecular variance (AMOVA) and the Bayesian clustering method and by determining the main measures of genetic diversity. AMOVA revealed considerable population differentiation in both the native and invasive ranges. Our results did not indicate a decrease in genetic diversity in the non-native populations of B. orientalis. Similar measures of genetic diversity and genetic structure were determined in the invasive populations in two geographically and ecologically distinct, non-native regions located in Europe and Asia. In both of these regions, higher genetic diversity was detected in the non-native populations than in the native region populations, which may be due to multiple introductions. However, Bayesian clustering analysis revealed slightly different sources of invasive populations in the two non-native regions. Genetic diversity patterns revealed the lack of isolation by distance between populations and confirmed the influence of anthropogenic factors on the spread of B. orientalis. The significance of native populations as germplasm resources for breeding is discussed.  相似文献   

3.
Hyphantria cunea (Drury) has colonized many countries outside its native range of North America and has become a model species for studies of the colonization and subsequent adaptation of agricultural pests. Molecular genetic analyses can clarify the origin and subsequent adaptations to non-native habitats. Using the mitochondrial COI gene, we examined the genetic relationships between invasive populations (China, Iran, Japan, and Korea) and native populations (i.e., the United States). The Jilin (China) and Guilan (Iran) populations showed nine previously unknown haplotypes that differed from those found in the south–central United States, suggesting multiple colonization events and different regions of invasion. A dominant mtDNA haplotype in populations in the United States was shared by all of the populations investigated, suggesting that H. cunea with that haplotype have successfully colonized China, Iran, Japan, and Korea.  相似文献   

4.
Biological invasions represent an important component of global change, with potentially huge detrimental effects on native biological biodiversity and ecosystems. Knowledge about invasion history provides information about the invasion process and the origin and genetic composition of invading populations. To clarify the source and invasive routes of a successful world-wide invader, the veined rapa whelk, Rapana venosa, genetic variability of samples from five representative native populations from coasts of Japan and China and 13 worldwide invasive populations was analyzed using 11 nuclear microsatellite loci. A dramatic decrease of genetic variation was detected in the invasive populations compared with the native populations. The results demonstrated that R. venosa was capable of establishing itself in many areas despite a dramatic genetic bottleneck, suggesting that a remarkable reduction of genetic diversity is not a limiting factor for short-term success of this invasive species. Considering the lack of mitochondrial variation previously observed in the invasive populations, the dramatic genetic bottleneck and the allele distribution detected using microsatellites suggested that the original introduced Black Sea population could have been founded by very few individuals, perhaps only a single female and a single male. The initial invasive Black Sea population was likely an accidental introduction from Japan, and then invaded the Adriatic Sea by range expansion, which served as a source for subsequent invasive populations in Europe and America by various transport vectors. In addition, microsatellite alleles in the invasive populations showed a tendency to mutate with the addition or deletion of a single repeat, which is consistent with the stepwise mutation model. Our findings provide a good example of how an aquatic invader with a drastic genetic bottleneck and very low genetic diversity rapidly expands its geographical range.  相似文献   

5.
Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.  相似文献   

6.
Elaborate and expensive endeavours are underway worldwide to understand and manage biological invasions. However, the success of such efforts can be jeopardised due to taxonomic uncertainty. We highlight how unresolved native range taxonomy can complicate inferences in invasion ecology using the invasive tree Acacia dealbata in South Africa as an example. Acacia dealbata is thought to comprise two subspecies based on morphological characteristics and environmental requirements within its native range in Australia: ssp. dealbata and spp. subalpina. Biological control is the most promising option for managing invasive A. dealbata populations in South Africa, but it remains unknown which genetic/taxonomic entities are present in the country. Resolving this question is crucial for selecting appropriate biological control agents and for identifying areas with the highest invasion risk. We used species distribution models (SDMs) and phylogeographic approaches to address this issue. The ability of subspecies-specific and overall species SDMs to predict occurrences in South Africa was also explored. Furthermore, as non-overlapping bioclimatic niches between the two taxonomic entities may translate into evolutionary distinctiveness, we also tested genetic distances between the entities using DNA sequencing data and network analysis. Both approaches were unable to differentiate the two putative subspecies of A. dealbata. However, the SDM approach revealed a potential niche shift in the non-native range, and DNA sequencing results suggested repeated introductions of different native provenances into South Africa. Our findings provide important information for ongoing biological control attempts and highlight the importance of resolving taxonomic uncertainties in invasion ecology.  相似文献   

7.
Genetic variation in invasive populations is affected by a variety of processes including stochastic forces, multiple introductions, population dynamics and mating system. Here, we compare genetic diversity between native and invasive populations of the selfing, annual plant Senecio vulgaris to infer the relative importance of genetic bottlenecks, multiple introductions, post-introduction genetic drift and gene flow to genetic diversity in invasive populations. We scored multilocus genotypes at eight microsatellite loci from nine native European and 19 Chinese introduced populations and compared heterozygosity and number of alleles between continents. We inferred possible source populations for introduced populations by performing assignment analyses and evaluated the relative contributions of gene flow and genetic drift to genetic diversity based on correlations of pairwise genetic and geographic distance. Genetic diversity within Chinese populations was significantly reduced compared to European populations indicating genetic bottlenecks accompanying invasion. Assignment tests provided support for multiple introductions with populations from Central China and southwestern China descended from genotypes matching those from Switzerland and the UK, respectively. Genetic differentiation among populations in China and Europe was not correlated with geographic distance. However, European populations exhibited less variation in the relation between G ST and geographical distance than populations in China. These results suggest that gene flow probably plays a more significant role in structuring genetic diversity in native populations, whereas genetic drift appears to predominate in introduced populations. High rates of selfing in Chinese populations may restrict opportunities for pollen-mediated gene flow. Repeated colonization-extinction cycles associated with ongoing invasion is likely to maintain low genetic diversity in Chinese populations.  相似文献   

8.
An emerging insight in invasion biology is that intra-specific genetic variation, human usage, and introduction histories interact to shape genetic diversity and its distribution in populations of invasive species. We explore these aspects for the tree species Paraserianthes lophantha subsp. lophantha, a close relative of Australian wattles (genus Acacia). This species is native to Western Australia and is invasive in a number of regions globally. Using microsatellite genotype and DNA sequencing data, we show that native Western Australian populations of P. lophantha subsp. lophantha are geographically structured and are more diverse than introduced populations in Australia (New South Wales, South Australia, and Victoria), the Hawaiian Islands, Portugal, and South Africa. Introduced populations varied greatly in the amount of genetic diversity contained within them, from being low (e.g. Portugal) to high (e.g. Maui, Hawaiian Islands). Irrespective of provenance (native or introduced), all populations appeared to be highly inbred (F IS ranging from 0.55 to 0.8), probably due to selfing. Although introduced populations generally had lower genetic diversity than native populations, Bayesian clustering of microsatellites and phylogenetic diversity indicated that introduced populations comprise a diverse array of genotypes, most of which were also identified in Western Australia. The dissimilarity in the distribution and number of genotypes in introduced regions suggests that non-native populations originated from different native sources and that introduction events differed in propagule pressure.  相似文献   

9.
Climate similarity favors biological invasion, but a match between seasonality in the novel range and the timing of life cycle events of the invader also influences the outcome of species introduction. Yet, phenology effects on invasion success have generally been neglected. Here we study whether a phenological mismatch limits the non-native range of a globally successful invader, the Ring-necked parakeet, in Europe. Given the latitudes at which parakeets have established across Europe, they breed earlier than expected based on breeding dates from the native Asian range. Moreover, comparing the breeding dates of European populations to those of parakeets in the native Asian range, to five native breeding bird species in Europe and to the start of the growing season of four native European trees shows that the discrepancy between expected and actual breeding phenology is greater in northern Europe. In northern European populations, this temporal mismatch appears to have negative effects on hatching success, and on population growth rates in years that are colder than average in the first six months. Phenological mismatch also can explain why parakeets from African populations (that are more likely to breed in autumn) have been poor invaders compared to parakeets from Asia. These lines of evidence support the hypothesis that the reproductive phenology of the Ring-necked parakeet can be a limiting factor for establishment and range expansion in colder climates. Our results provide growing support for the hypothesis that the match between climate seasonality and timing of reproduction (or other important life cycle events) can affect the establishment success, invasive potential and distribution range of introduced non-native species, beyond the mere effect of climate similarity.  相似文献   

10.
Irrespective of its causes, strong population genetic structure indicates a lack of gene flow. Understanding the processes that underlie such structure, and the spatial patterns it causes, is valuable for conservation efforts such as restoration. On the other hand, when a species is invasive outside its native range, such information can aid management in the non-native range. Here we explored the genetic characteristics of the Australian tree Acacia dealbata in its native range. Two subspecies of A. dealbata have previously been described based on morphology and environmental requirements, but recent phylogeographic data raised questions regarding the validity of this taxonomic subdivision. The species has been widely planted within and outside its native Australian range and is also a highly successful invasive species in many parts of the world. We employed microsatellite markers to investigate the population genetic diversity and structure among 42 A. dealbata populations from across the species’ native range. We also tested whether environmental variables purportedly relevant for the putative separation of subspecies are linked with population genetic differentiation. We found no relationship between population genetic structure of A. dealbata in Australia and these environmental features. Rather, we identified two geographically distinct genetic clusters that corresponded with populations in the northeastern part of mainland Australia, and the southern mainland and Tasmanian range of the species. Our results do not support the taxonomic subdivision of the species into two distinct subspecies based on environmental features. We therefore assume that the observed morphological differences between the putative subspecies are plastic phenotypic responses. This study provides population genetic information that will be useful for the conservation of the species within Australia as well as to better understand the invasion dynamics of A. dealbata.  相似文献   

11.
Biogeographical comparisons of native and non-native populations allow researchers to understand the degree to which traits contributing to invasion success are intrinsic or change during the invasion process. Here, we investigate whether traits underlying interspecific competition change following invasion and whether these alter the impacts of two crayfish congeners that have invaded into each other’s native ranges. Specifically, we compared native and non-native populations of rusty (Faxonius rusticus) and virile crayfish (F. virilis). We compared native and non-native populations of each species using laboratory assays to examine aggression and large mesocosms with the congeners in sympatry to examine growth and survival as well as impacts on lower trophic levels. We found that non-native virile crayfish were more aggressive in response to a threat than native virile crayfish and exhibited greater growth and survival in sympatry with rusty crayfish. These intraspecific differences were large enough to alter coexistence between species in the mesocosm experiment, which is consistent with patterns of coexistence between these species in the field. We did not observe differences in traits between native and non-native rusty crayfish, but rusty crayfish were consistently competitively dominant over virile crayfish in paired laboratory assays. Non-native populations of both species had greater impacts on lower trophic levels than native populations. Taken together, these findings provide new evidence that trait changes during invasions may enhance ecological impacts of invasive animals and their ability to compete with closely related native species.  相似文献   

12.
North American black bullhead, Ameiurus melas, which were introduced to Europe in the nineteenth and twentieth centuries, have received relatively little study. With focus on growth and reproduction, this extensive review, which includes new European data, aims to inform the risk analysis process concerning this non-native species in Europe. Surprisingly, the new data for Europe were more comprehensive than for native populations, with data available mainly from Oklahoma, and North and South Dakota (USA). In terms of relative growth, juvenile A. melas were found to have a relatively uniform body shape regardless of the population’s origin, whereas adults developed different phenotypes depending upon location. Overall growth trajectory was significantly faster for native than for non-native populations. Growth index values decreased significantly with increasing latitude in non-native but not native populations—the latter decreasing weakly with increasing altitude in the populations located at latitudes <40°. Mean general condition (slope ‘b’), mean sex ratio and mean egg diameter did not differ significantly between native and non-native populations. Absolute fecundity was slightly (but not significantly) higher in non-native than native populations. GSI data, which were very scarce for native populations, suggest gonad production may be slightly higher in native than in non-native populations. Precise data on age at maturity (AaM) are lacking for the native range, where 2–5 years is reported. Whereas, in the introduced range the greatest AaM was 3.5 years, and AaM decreases with increasing juvenile growth (TL at age 3). The populations with fastest juvenile growth tended to be from warmer water bodies where they are considered to be invasive. The great growth and life-history plasticity of black bullhead affords the species great potential to invade and establish viable populations in new areas.  相似文献   

13.
The harlequin ladybird, Harmonia axyridis, is an important natural enemy of aphids throughout the world, but is now also considered an invasive alien species. We performed a meta-analysis of published life history data to address the question whether invading populations in Europe and North America have life history parameters that differ from native populations in Asia, explaining the beetle’s invasion success in new territories. In this meta-analysis, we accounted for important covariables that are often reported in published studies such as temperature, food source (aphids or eggs of Ephestia kuehniella), strain (laboratory or field populations) and photoperiod. Temperature was a key factor having consistent large effects on development rate, survival and reproductive characteristics of H. axyridis. Food source, strain, and photoperiod had effects on some, but not all characteristics, and their overall effect across characteristics was minor. Individuals of invasive populations had a shorter pre-oviposition period and higher fecundity at low temperatures than those of native populations, and a greater longevity across all temperatures. No differences in survival were found between native and invasive populations, while differences in development rate were not consistent, with opposing results obtained according to the way development rate was measured in trials reported in the literature. Results of this meta-analysis support the hypothesis that the life history of the beetle has changed during its invasion into North America and Europe. Invasive populations had a shorter pre-oviposition period and higher fecundity at low temperatures, as well as a greater longevity across all temperatures than native populations. These differences may partially explain the invasive success of H. axyridis.  相似文献   

14.
Aims Understanding the role of genetics in biological invasions has become an important aspect for modern plant ecology. Many studies suggest that increased ploidy level benefits the success of an invasive species, but the basis for this phenomenon is not fully understood. In its native, North American range, Solidago gigantea has three geo-cytotypes comprising di-, tetra- and hexaploid populations, while in Europe, where it is highly invasive, S. gigantea stands are composed primarily of tetraploid individuals. Our study investigates whether North American hexaploids can induce a greater risk of invasion, due to their higher performance in a non-native range, as compared to the existing tetraploids of that range.Methods We performed greenhouse and common garden experiments along with microsatellite analyses to test whether differences in chromosome number and origin of the species mean superior fitness in the introduced range.Important findings Genetic diversity was significantly higher in the native hexaploid populations (A R = 6.04; H e = 0.7794), rather than the non-native tetraploid populations (A R = 4.83; H e = 0.6869). Furthermore, differentiation between geo-cytotypes was moderate (ρ ST = 0.1838), which was also confirmed by their clear segregation in principal component analysis and structure analyses, proving their different genetic structure. In contrast to genetic diversity, the non-native tetraploid geo-cytotype performed better in the common garden experiment, implying that higher genetic diversity does not always mean better success. Our results suggest that native hexaploids do not present a greater risk, as assessed by their performance in the introduced range, when compared to the non-native tetraploids, as was suggested by previous studies. Nevertheless, their introduction is still undesirable due to their different genetic structure, which, through hybridization, could give a new drive to the invasion of S. gigantea .  相似文献   

15.
Intraspecific hybridization between diverged populations can enhance fitness via various genetic mechanisms. The benefits of such admixture have been proposed to be particularly relevant in biological invasions, when invasive populations originating from different source populations are found sympatrically. However, it remains poorly understood if admixture is an important contributor to plant invasive success and how admixture effects compare between invasive and native ranges. Here, we used experimental crosses in Lythrum salicaria, a species with well-established history of multiple introductions to Eastern North America, to quantify and compare admixture effects in native European and invasive North American populations. We observed heterosis in between-population crosses both in native and invasive ranges. However, invasive-range heterosis was restricted to crosses between two different Eastern and Western invasion fronts, whereas heterosis was absent in geographically distant crosses within a single large invasion front. Our results suggest that multiple introductions have led to already-admixed invasion fronts, such that experimental crosses do not further increase performance, but that contact between different invasion fronts further enhances fitness after admixture. Thus, intra-continental movement of invasive plants in their introduced range has the potential to boost invasiveness even in well-established and successfully spreading invasive species.  相似文献   

16.
The rate of aquatic invasions by planktonic organisms has increased considerably in recent decades. In order to effectively direct funding and resources to control the spread of such invasions, a methodological framework for identifying high-risk transport vectors, as well as ruling out vectors of lesser concern will be necessary. A number of estuarine ecosystems on the North American Pacific Northwest coast have experienced a series of high impact planktonic invasions that have slowly unfolded across the region in recent decades, most notably, that of the planktonic copepod crustacean Pseudodiaptomus inopinus. Although introduction of P. inopinus to the United States almost certainly occurred through the discharge of ballast water from commercial vessels originating in Asia (the species’ native range), the mechanisms and patterns of subsequent spread remain unknown. In order to elucidate the migration events shaping this invasion, we sampled the genomes of copepods from seven invasive and two native populations using restriction-site associated DNA sequencing. This genetic data was evaluated against spatially-explicit genetic simulation models to evaluate competing scenarios of invasion spread. Our results indicate that invasive populations of P. inopinus exhibit a geographically unstructured genetic composition, likely arising from infrequent and large migration events. This pattern of genetic patchiness was unexpected given the linear geographic structure of the sampled populations, and strongly contrasts with the clear invasion corridors observed in many aquatic systems.  相似文献   

17.
The up-to-date phylogeographical distribution of the topmouth gudgeon Pseudorasbora parva Temminck et Schlegel 1846 in water bodies of the Northern Black Sea region is considered. Genetic variation of mtDNA cyt b gene is analyzed. It is established that topmouth gudgeon penetrated and spread in the basins of the Dnieper and Don rivers and in water bodies of Crimea from the secondary center of its dispersion— water bodies of Central Europe. It is demonstrated that haplotypes of topmouth gudgeon in the Danube delta are the most homologous to the haplotypes in the native range of the species in China. A considerable decrease in the level of genetic variation in the populations in the Black Sea region is reported.  相似文献   

18.
Introduced non-native fishes can cause considerable adverse impacts on freshwater ecosystems. The pumpkinseed Lepomis gibbosus, a North American centrarchid, is one of the most widely distributed non-native fishes in Europe, having established self-sustaining populations in at least 28 countries, including the U.K. where it is predicted to become invasive under warmer climate conditions. To predict the consequences of increased invasiveness, a field experiment was completed over a summer period using a Control comprising of an assemblage of native fishes of known starting abundance and a Treatment using the same assemblage but with elevated L. gibbosus densities. The trophic consequences of L. gibbosus invasion were assessed with stable isotope analysis and associated metrics including the isotopic niche, measured as standard ellipse area. The isotopic niches of native gudgeon Gobio gobio and roach Rutilus rutilus overlapped substantially with that of non-native L. gibbosus, and were also substantially reduced in size compared to ponds where L. gibbosus were absent. This suggests these native fishes shifted to a more specialized diet in L. gibbosus presence. Both of these native fishes also demonstrated a concomitant and significant reduction in their trophic position in L. gibbosus presence, with a significant decrease also evident in the somatic growth rate and body condition of G. gobio. Thus, there were marked changes detected in the isotopic ecology and growth rates of the native fish in the presence of non-native L. gibbosus. The implications of these results for present and future invaded pond communities are discussed.  相似文献   

19.
Invasive Ruffe (Gymnocephalus cernua) has caused substantial ecological damage in North America, parts of Western Europe, Scandinavian countries, and the United Kingdom. The objectives of this review are to define Ruffe’s native and non-native range, examine life history requirements, explore the life cycle, and differentiate between life stages. We compare data from its native and non-native ranges to determine if there are any differences in habitat, size, age, genotype, or seasonal migration. Literature from both the native and non-native ranges of Ruffe, with some rare, translated literature, is used. In each life stage, Ruffe exhibit plasticity with regard to chemical, physical, biological, and habitat requirements. Adult Ruffe has characteristics that allow them to adapt to a range of environments, including rapid maturation, relatively long life and large size (allowing them to reproduce many times in large batches), batch spawning, genotype and phenotype (having plasticity in their genetic expression), tolerance to a wide range of water quality, broad diet, and multiple dispersal periods. There is, however, variability among these characteristics between the native, non-native North American, and European non-native populations, which presents a challenge to managing populations based on life history characteristics. Monitoring and preventative strategies are important because, based on Ruffe’s variable life history strategies and its recent range expansion, all of the Laurentian Great Lakes and many other water bodies in the UK, Europe, and Norway are vulnerable to Ruffe establishment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号