首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
1. Free-living insect herbivores foraging on 10 000 tagged seedlings representing five species of common rainforest trees were surveyed monthly for more than 1 year in an unlogged forest plot of 1 km2 in Guyana. 2. Overall, 9056 insect specimens were collected. Most were sap-sucking insects, which represented at least 244 species belonging to 25 families. Leaf-chewing insects included at least 101 species belonging to 16 families. Herbivore densities were among the lowest densities reported in tropical rainforests to date: 2.4 individuals per square metre of foliage. 3. Insect host specificity was assessed by calculating Lloyd’s index of patchiness from distributional records and considering feeding records in captivity and in situ. Generalists represented 84 and 78% of sap-sucking species and individuals, and 75 and 42% of leaf-chewing species and individuals. In particular, several species of polyphagous xylem-feeding Cicadellinae were strikingly abundant on all hosts. 4. The high incidence of generalist insects suggests that the Janzen–Connell model, explaining rates of attack on seedlings as a density-dependent process resulting from contagion of specialist insects from parent trees, is unlikely to be valid in this study system. 5. Given the rarity of flushing events for the seedlings during the study period, the low insect densities, and the high proportion of generalists, the data also suggest that seedlings may represent a poor resource for free-living insect herbivores in rainforests.  相似文献   

2.
About 9,000 individuals of sap-sucking and leaf-chewing insects, representing 345 species, were collected from 10,000 seedlings belonging to 5 rainforest tree species in an unlogged forest in Guyana. For the 40 most common species, it was possible to estimate their host specificity, diurnal activity, seasonal distribution, spatial aggregation, abundance and body weight. Most species were generalists but more specialised species tended to show a higher spatial aggregation, a more restricted diurnal activity and a higher seasonality. Although insect abundance was highest at the onset of the long wet season in May, seasonal amplitude was not pronounced. The combined effects of host and rainfall explained 14.5% of the total variance in insect seasonality, which was poorly explained by the leaf production of seedlings. The spatial distribution of insects was often aggregated and, overall, explained by host effect, production of young foliage, number of conspecific trees within a radius of 50m, and number of dead seedlings at each collecting station. However, these variables explained only 7% of the variance in spatial distribution. The lack of notable influence of leaf production and other important variables recorded at the collecting stations suggests that the seedlings represent a marginal food resource for most of the insect species collected.  相似文献   

3.
Classic research on elevational gradients in plant–herbivore interactions holds that insect herbivore pressure is stronger under warmer climates of low elevations. However, recent work has questioned this paradigm, arguing that it oversimplifies the ecological complexity in which plant–insect herbivore interactions are embedded. Knowledge of antagonistic networks of plants and herbivores is however crucial for understanding the mechanisms that govern ecosystem functioning. We examined herbivore damage and insect herbivores of eight species of genus Ficus (105 saplings) and plant constitutive defensive traits of two of these species, along a rain forest elevational gradient of Mt. Wilhelm (200–2,700 m a.s.l.), in tropical Papua New Guinea. We report overall herbivore damage 2.4% of leaf area, ranging from 0.03% in Ficus endochaete at 1,700 m a.s.l. to 6.1% in F. hombroniana at 700 m a.s.l. Herbivore damage and herbivore abundances varied significantly with elevation, as well as among the tree species, and between the wet and dry season. Community-wide herbivore damage followed a hump-shaped pattern with the peak between 700 and 1,200 m a.s.l. and this pattern corresponded with abundance of herbivores. For two tree species surveyed in detail, we observed decreasing and hump-shaped patterns in herbivory, in general matching the trends found in the set of plant defenses measured here. Our results imply that vegetation growing at mid-elevations of the elevational gradient, that is at the climatically most favorable elevations where water is abundant, and temperatures still relatively warm, suffers the maximum amount of herbivorous damage which changes seasonally, reflecting the water availability.  相似文献   

4.
Plants and invertebrate herbivores are major constituents of terrestrial food webs. Identifying component species and tracing their interactions in highly diverse communities are a monumental task. Novotny et al. 2010 present the first broad conspectus of herbivore–plant interactions in a forest in Papua New Guinea. In more than 15 years, nearly 7000 feeding links were traced between about 200 plants and 1500 insect herbivores. Although staggering, these figures might represent only 15% of the total herbivore richness and interaction diversity in that lowland forest. Standardized comparisons also showed distinctive specialization and diversification patterns in different feeding guilds, restricting the possibility of using any single guild as surrogate for the entire assemblage.  相似文献   

5.
Vegetation structure can often determine insect herbivore fauna in forests, but this mechanism has been demonstrated in seasonally dry tropical forests (SDTFs) only at small spatial scales. In this study we evaluated the effects of the geographical location of SDTFs and vegetation structure on insect herbivore communities (leaf-chewing and sap-sucking guilds) in three Brazilian ecoregions (Cerrado, Cerrado/Caatinga transition, and Caatinga). We tested the following predictions: (1) insect herbivore species composition, richness, abundance and beta diversity differ among forests in different ecoregions; (2) insect richness, abundance and beta diversity are positively related to tree richness and density; (3) spatial turnover of species is the primary mechanism that generates herbivorous insect β-diversity in different ecoregions, and is positively influenced by tree richness. The composition, richness, and abundance of herbivorous insects differed over SDFs along the gradient of Cerrado and Caatinga. Both herbivore guilds responded positively to tree richness. Tree density only determined the richness and abundance of sap-sucking herbivores. Insect β-diversity was similar among Cerrado and transition areas, but lower in Caatinga itself; β-diversity was also positively affected by tree richness. Species turnover, as opposed to nestedness, was the main mechanism generating β-diversity, but itself was not related to tree richness. We demonstrate in this study the importance of landscape diversity and availability of local resources for herbivorous insect communities, and we emphasize the importance of SDTF conservation in different ecoregions as a result of species turnover.  相似文献   

6.
We compared the richness and abundance of free-feeding herbivore insects (sap-sucking and leaf-chewing), leaf herbivory damage, leaf toughness and total phenolic content between two ontogenetic stages (juvenile and reproductive) of Handroanthus spongiosus (Rizzini) S. O. Grose (Bignoniaceae) throughout the rainy season in a Brazilian seasonally dry tropical forest. Twenty marked individuals of H. spongiosus were sampled per ontogenetic stage in each period of the rainy season (beginning, middle, and end). Herbivore richness and abundance did not differ between ontogenetic stages, but higher percentage of leaf damage, higher concentration of phenolic compounds, and lower leaf toughness were observed for juvenile individuals. The greatest morphospecies abundance was found at the beginning of the rainy season, but folivory increment was higher at the end, despite the fact that leaf toughness and total phenolic content increased in the same period. No significant relationships between leaf damage and both total phenolic content and leaf toughness were observed. These results suggest that insect richness and abundance do not track changes in foliage quality throughout plant ontogeny, but their decrease along rainy season confirms what was predicted for tropical dry forests. The general trends described in the current study corroborate those described in the literature about herbivores and plant ontogeny. However, the lack of relationship between herbivore damage and the two plant attributes considered here indicates that the analyses of multiple defensive traits (the defense syndrome) must be more enlightening to determine the mechanisms driving temporal and spatial patterns of herbivore attack.  相似文献   

7.
1. Gall‐forming insects are a guild of endophages that exhibit a high level of fidelity to their host plants, however, their level of host specificity is seldom explicitly tested. 2. Gall‐forming insect taxa from 32 species of woody tropical plants with resolved phylogenetic relationships were collected and reared, representing 15 families from all the major clades of angiosperms, at three lowland rainforest locations in Madang, Papua New Guinea (PNG). 3. More than 8800 galled plant parts were collected from 78 gall morphospecies at an average of 2.4 per host plant. Total species richness at the sampling sites was estimated to be 83–89. All but one morphospecies were monophagous resulting in an effective specialisation of 0.98. 4. Specific leaf weight, foliar nitrogen, the presence of latex, and the successional preference of plant species all gave a phylogenetic signal, but only plant successional preference influenced the species richness of galls on analysis of phylogenetically independent contrasts. Gall species were distributed randomly among host plant species and showed no preference for any particular plant lineage. Furthermore, most gall‐forming taxa were evenly dispersed across the host plant phylogeny. 5. In the tropical rainforests of New Guinea, gall‐forming insects are ubiquitous but occur in species‐poor assemblages. Local species richness is closely tied to the diversity of angiosperms owing to very high host specificity. 6. Finally, galler species richness data from the literature across habitats and latitudes were compared and suggest that tropical rainforests may be richer in galls than previously acknowledged.  相似文献   

8.
We propose a new classification of rain forest plants into eight fruit syndromes, based on fruit morphology and other traits relevant to fruit‐feeding insects. This classification is compared with other systems based on plant morphology or traits relevant to vertebrate fruit dispersers. Our syndromes are based on fruits sampled from 1,192 plant species at three Forest Global Earth Observatory plots: Barro Colorado Island (Panama), Khao Chong (Thailand), and Wanang (Papua New Guinea). The three plots differed widely in fruit syndrome composition. Plant species with fleshy, indehiscent fruits containing multiple seeds were important at all three sites. However, in Panama, a high proportion of species had dry fruits, while in New Guinea and Thailand, species with fleshy drupes and thin mesocarps were dominant. Species with dry, winged seeds that do not develop as capsules were important in Thailand, reflecting the local importance of Dipterocarpaceae. These differences can also determine differences among frugivorous insect communities. Fruit syndromes and colors were phylogenetically flexible traits at the scale studied, as only three of the eight seed syndromes, and one of the 10 colors, showed significant phylogenetic clustering at either genus or family levels. Plant phylogeny was, however, the most important factor explaining differences in overall fruit syndrome composition among individual plant families or genera across the three study sites. Abstract in Melanesian is available with online material.  相似文献   

9.
An initial destabilization of functions triggered by drought stress in plants is followed by acclimatization and acquisition of tolerance; however, knowledge remains limited on drought-mediated changes in plant quality for herbivores. We tested whether a water-stressed fast-growing plant negatively affects host-specialist insects in both sap-sucking and leaf-chewing feeding guilds. Collards (Brassica oleracea var. acephala) were grown in well-watered, slightly water-stressed and severely water-stressed conditions. Decreasing soil moisture adversely affected plant development, assessed as a reduction in leaf number and size, stomatal size and relative water content. Severely stressed plants had less fiber and glucosinolates; however, they showed more total nitrogen and lipids. Larval survival, pupal weight, reproductive rate (Ro) and rate of population growth (r) were lower when the leaf-chewing Plutella xylostella was reared with severely stressed collards. In multiple-choice tests, moths laid fewer eggs on leaf discs of collard that were exposed to drought. The fecundity of the sap-sucking Brevicoryne brassicae was higher and the development of alates was lower when insects were fed on plants kept in well-watered regime as compared to slight-stress and severe-stress. Despite higher nitrogen content and fewer glucosinolates, a higher level of leaf surface wax in severely stressed collards possibly decreased food quality for both herbivores. Thus, host-specific herbivores of different guilds showed similar responses to drought-stressed, fast-growing plants. Water-stressed crops could discourage the attack of specialist insects, but the intensity of the stress that is required to achieve this effect will greatly reduce crop production, in terms of plant growth or foliage increment.  相似文献   

10.
In the tropics, antagonistic seed predation networks may have different properties than mutualistic pollination and seed dispersal networks, but the former have been considerably less studied. We tested whether the structure of antagonistic tripartite networks composed of host plants, insects developing within seeds and fruits, and their insect parasitoids could be predicted from plant phylogenetic distance and plant traits. We considered subsets of the networks (‘subnetworks') at three rainforest locations (Panama, Thailand, Papua New Guinea), based on insect families, plant families or plant functional groups. We recorded 3197 interactions and observed a low percentage of realized interactions, especially in Panama, where insect host specificity was higher than in Thailand or New Guinea. Several factors may explain this, including insect faunal composition, incidence of dry fruits, high fruit production and high occurrence of Fabaceae at the Panamanian site. Host specificity was greater among seed-eaters than pulp-eaters and for insects feeding on dry fruits as opposed to insects feeding on fleshy fruits. Plant species richness within plant families did not influence insect host specificity, but site characteristics may be important in this regard. Most subnetworks were extremely specialized, such as those including Tortricidae and Bruchinae in Panama. Plant phylogenetic distance, plant basal area and plant traits (fruit length, number of seeds per fruit) had important effects on several network statistics in regressions weighted by sampling effort. A path analysis revealed a weak direct influence of plant phylogenetic distance on parasitoid richness, indicating limited support for the ‘nasty host hypothesis'. Our study emphasizes the duality between seed dispersal and seed predation networks in the tropics, as key plant species differ and host specificity tends to be low in the former and higher in the latter. This underlines the need to study both types of networks for sound practices of forest regeneration and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号