首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Fault bars are common stress‐induced feather abnormalities that could produce feather damage thus reducing flight performance. For that reason, it has been hypothesized that birds may have evolved adaptive strategies that reduce the costs of fault bars (the ‘fault bar allocation hypothesis’). An untested prediction of this hypothesis is that fault bars in important feathers for flight (wing and tail) should be less abundant where they produce more feather damage. We tested such a prediction using moulted wing and tail feathers of the long‐distance migrant Swainson's hawk Buteo swainsoni in its Argentinean wintering quarters. We recorded the occurrence of fault bars of different strengths (light, medium and strong) and the damage (lost of a portion of the vane) produced by them. The occurrence of fault bars was very variable, with strong ones being rare throughout and light and medium fault bars being more frequent in the tail than in the wing. Risk of feather damage was similarly high and low across feather groups for strong and light fault bars, respectively, and higher in the wing than in the tail for medium strength. The occurrence of fault bars of different strengths on different feather groups was negatively correlated with their propensity to produce feather damage. At low damage risk (<5%), the occurrence of fault bars was highly variable depending on the feather group, but above 5% of feather damage the occurrence of fault bars was highly reduced throughout. Our results supports the ‘fault bar allocation hypothesis’ of natural selection reducing fault bar occurrence where fault bars are more risky, but further suggest that selection pressure could be relaxed in other instances, leaving the way free for other mechanisms to shape fault bar occurrence.  相似文献   

2.
Fault bars are translucent bands produced by stressful events during feather formation. They weaken feathers and increase their probability of breakage, and thus could compromise bird fitness by lowering flight performance. It has been recently suggested ('fault bar allocation hypothesis') that birds could have evolved adaptive mechanisms for reducing fault bar load on the feathers with the highest function during flight. We tested this hypothesis by studying first-year individuals of the long-distance migratory, aerial forager barn swallow Hirundo rustica . We predicted that fault bars should be less abundant on the outermost wing and tail feathers, but more frequent on the tail than on the outermost wing feathers. Accordingly, we found that fault bars occurred more often in tertials than in primaries or secondaries. Tail feathers had fewer fault bars than tertials, but more than primaries. Within the tail, the distribution pattern of fault bars was W-shaped, with the highest fault bar load occurring on the streamers and on the two central feathers. Because streamers are the most important tail feathers for flight performance, this finding seems to contradict the 'fault bar allocation hypothesis'. However, flight performance is much less sensitive to changes in the shape of the tail than of the wings, which could explain why evolutionary forces have not counteracted the increase of fault bars associated with feather elongation during the recent evolution of streamers in the tail of hirundines.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 455–461.  相似文献   

3.
Physiological stress during ontogeny is known to cause abnormalities in keratin structures of vertebrates, but little is known about if and how organisms have evolved mechanisms to reduce the negative effects of these abnormalities. Stress experienced during avian feather growth is known to lead to the formation of fault bars, and thereby to the weakening of feathers because of shortage and slimming of barbules. Here we propose and test a new hypothesis (the 'fault bar allocation hypothesis') according to which birds should have evolved adaptive strategies to counteract this evolutionary pressure. In particular, we predicted and tested the idea that in flying birds, natural selection should have selected for mechanisms to reduce fault bar load on feathers with high strength requirements during flight. Data on the growth of feathers of nestling white storks (Ciconia ciconia) revealed a consistent allocation of more, and more intense, fault bars in innermost than in outermost wing feathers as predicted by our hypothesis. Moreover, the same pattern emerged from feathers of adult storks. We discuss the generality of our results, and suggest avenues for further investigations in this area.  相似文献   

4.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

5.
Fault bars are narrow malformations in feathers oriented almost perpendicular to the rachis where the feather vein and even the rachis may break. Breaks in the barbs and barbules result in small pieces of the feather vein being lost, while breaks in the rachis result in loss of the distal portion of the feather. Here, we provide a comprehensive review of 74 papers on fault bar formation in hopes of providing a clearer approach to their study. First, we review the evidence that the propensity to develop fault bars is modified by natural selection. Given that fault bars persist in the face of survival costs, we conclude that they must be an unfortunate consequence of some alternative adaptation that outweighs the fitness costs of fault bars. Second, we summarize evidence that the development of fault bars is triggered by psychological stress such as that of handling or predation attempts, and that they persist because the sudden contractions of the muscles in the feather follicle that control fright moults also causes the development of fault bars in growing feathers. Third, we review external and physiological (e.g. corticosterone) agents that may affect the likelihood that an acute stress will result in a growing feather exhibiting a fault bar. These modifying factors have often been treated as fundamental causes in the earlier literature on fault bars. Fourth, we then use this classification to propose a tentative model where fault bars of different severity (from light to severe) are the outcome of the interaction between the propensity to produce fault bars (which differs between species, individuals and feather follicles within individuals) and the intensity of the perturbation. This model helps to explain contradictory results in the literature, to identify gaps in our knowledge, and to suggest further studies. Lastly, we discuss ways in which better understanding of fault bars can inform us about other aspects of avian evolutionary ecology, such as the physiology of moult, the integration of moult into avian life cycles, and the strategies used to minimize stress during moult. Moreover, the study of fault bars may be relevant to understanding the aerodynamics of flight and the early evolution of flight.  相似文献   

6.
Growth bands and fault bars, widespread features of feathers that form during regeneration, have largely been studied independently. Growth bands result from normal regeneration: each pair of dark/light bands forms every 24 h. Fault bars are a response to stress during regeneration, creating a translucent line that can break the feather. We studied the relative position and width of these two structures in feathers of nestling and adult white storks Ciconia ciconia. We first confirmed that one growth band represents 24 h of feather regeneration. Fault bars did not occur at random within growth bands: 65.7% (in nestlings) and 45.6% (in adults) of them occurred in one out of six defined segments within a growth band, namely that segment corresponding to the first one‐third of night time hours. The width of fault bars relative to growth bands suggested that fault bars were produced during a median (range) of 7.0 h (2.7–27.0) in nestlings and 3.7 h (1.8–7.9) in adults. Fault bars were concentrated at feather tips in nestlings, but at central locations in adult feathers. Our results suggest that, in general, fault bars are a discrete event of a finite duration occurring mainly during the night (particularly in nestlings). This, along with current knowledge, suggests that acute stressors, rather than chronic ones, are responsible for fault bar formation. Thus, such acute punctual stressors (a matter of minutes) can have long‐lasting (months?years) physiological effects due to the wing load increase from feather breakage caused by fault bars.  相似文献   

7.
ABSTRACT.   As bio-indicators, bilateral asymmetry and fault bar formation have been found to be correlated with environmental quality, body condition, and individual fitness. Although commonly used as indices of the same parameters, it is not clear whether asymmetry and fault bars are equivalent measures of developmental history. We tested the possible relationship between these two metrics by measuring the degree of asymmetry and the number of fault bars in the wing and tail feathers of migrating White-throated Sparrows ( Zonotrichia albicollis ) at Long Point Bird Observatory on Lake Erie, Ontario, during October 2004. Within individuals, we found no relationship between the occurrence of fault bars and degree of bilateral asymmetry. In addition, individuals with higher fat scores had more symmetrical wings than individuals with lower scores, but did not have fewer fault bars. Together, these results suggest that fluctuating asymmetry and fault bar occurrence should not be used interchangeably as bio-indicators.  相似文献   

8.
Feather holes are small (0.5–1?mm in diameter) deformities that appear on the vanes of flight feathers. Such deformities were found in many bird species, including galliforms and passerines. Holey flight feathers may be more permeable to air, which could have a negative effect on their ability to generate aerodynamic forces. However, to date the effects of feather holes on flight performance in birds remained unclear. In this study we investigated the relationship between the number of feather holes occurring in the wing or tail feathers and short term flight performance traits – aerial manoeuvrability, maximum velocity and maximum acceleration – in barns swallows, which are long distance migrating aerial foragers. We measured short-term flight performance of barn swallows in a standardized manner in flight tunnels. We found that acceleration and velocity were significantly negatively associated with the number of holes in the wing flight feathers, but not with those in the tail feathers. In the case of acceleration the negative relationship was sex specific – while acceleration significantly decreased with the number of feather holes in females, there was no such significant association in males. Manoeuvrability was not significantly associated with the number of feather holes. These results are consistent with the hypothesis that feather holes are costly in terms of impaired flight. We discuss alternative scenarios that could explain the observed relationships. We also suggest directions for future studies that could investigate the exact mechanism behind the negative association between the number of feather holes and flight characteristics.  相似文献   

9.
Migration causes temporal and energetic constraints during plumage development, which can compromise feather structure and function. In turn, given the importance of a good quality of flight feathers in migratory movements, selection may have favoured the synthesis of feathers with better mechanical properties than expected from a feather production constrained by migration necessities. However, no study has assessed whether migratory behaviour affects the relationship between the mechanical properties of feathers and their structural characteristics. We analysed bending stiffness (a feather mechanical property which is relevant to birds’ flight), rachis width and mass (two main determinants of variation in bending stiffness) of wing and tail feathers in migratory and sedentary blackcaps Sylvia atricapilla. Migratory blackcaps produced feathers with a narrower rachis in both wing and tail, but their feathers were not significantly lighter; in addition, bending stiffness was higher in migratory blackcaps than in sedentary blackcaps. Such unexpected result for bending stiffness remained when we statistically controlled for individual variation in rachis width and feather mass, which suggests the existence of specific mechanisms that help migratory blackcaps to improve the mechanical behaviour of their feathers under migration constraints.  相似文献   

10.
Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1) and the sexually dimorphic outermost (Ta6) and monomorphic second outermost (Ta5) tail feathers of barn swallows (Hirundo rustica) from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW) and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the result of these changes can be contrasting.  相似文献   

11.

Background

The trade-off between current and residual reproductive values is central to life history theory, although the possible mechanisms underlying this trade-off are largely unknown. The ‘molt constraint’ hypothesis suggests that molt and plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains insufficiently explored.

Methodology/Principal Findings

The seasonal change in photoperiod was manipulated to accelerate the molt rate. This treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e. shorter, smaller, with a higher barbule density and fewer plumulaceous barbs). However, the wing, tail and primary feather lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent.

Conclusions/Significance

This study shows that sedentary birds might face evolutionary costs because of the molt rate–feather quality conflict. This is the first study to experimentally demonstrate that (1) molt rate affects several aspects of body feathers as well as flight feathers and (2) the costly effects of rapid molt are condition-specific. We conclude that molt rate and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth.  相似文献   

12.
Secondary sexual characters are assumed to be costly to produce and maintain, and this will select for morphological modifications that reduce the magnitude of such costs. Here we test whether a feather ornament, the sexually exaggerated outermost tail feathers of male barn swallows Hirundo rustica, a trait currently subject to a directional female mate preference, and other aspects of the morphology used for flight have been modified to increase aerodynamic performance. This was done by making comparisons among sexes within populations, among individuals varying in tail length within populations, and among populations from different parts of Europe. Male barn swallows experienced reduced drag from their elongated tail feathers by morphological modifications of the ornamental feathers as compared to females. Morphological features of the outermost tail feathers were unrelated to tail length in both males and females within populations. Wing and tail morphology (length of central tail feathers and wings, wing span, wing area, wing loading, and aspect ratio) was modified in males compared to females. Barn swallows with long tails had morphological tail and wing modifications that reduced the cost of a large ornament, and similar modifications were seen among populations. The costs of the exaggerated secondary sexual character were therefore reduced by the presence of cost-reducing morphological modifications. The assumptions of reliable signalling theory, that signals should be costly, but more so to low than to high quality individuals, were not violated because long-tailed male barn swallows had the largest cost-reducing morphological characters.  相似文献   

13.
Conflicting pressures on the evolution of wing morphology are exemplified within the avian genus Anthus , where different migratory and flight display behaviours might be expected to exert different effects on the evolution of wing morphology. A phylogenetically controlled study of wing shape in relation to migratory distance and flight display suggests that migration has a larger impact on wing morphology than does flight display, despite the fact that flight display is generally the more heavily used flight-type. Correlations between single measures of morphology and migration were found only in males, although principal components analysis suggests that overall wing shape is correlated with migratory distance in both sexes. With regard to flight display, males, but not females, show a positive relationship between flight display type and the length of a flight feather that is highly elongated relative to other flight feathers. This exceptionally long flight feather is also found in other genera that perform flight displays.  相似文献   

14.
Birds encompass a large range of body sizes, yet the importance of body size on feather morphology and mechanical properties has not been characterized. In this study, I examined the scaling relationships of primary flight feathers within a phylogenetically diverse sample of avian species varying in body size by nearly three orders of magnitude. I measured the scaling relationships between body mass and feather linear dimensions as well as feather flexural stiffness. The resnlts of an independent contrasts analysis to test the effects of phylogenetic history on the characters measured had no effect on the scaling relationships observed. There was slight, but not significant, positive allometry in the scaling of shaft diameter with respect to feather length across a range of body masses. The scaling of feather length and diameter against body mass was not significantly different from isometry. Flexural stiffness, however, exhibited strong negative allometry. Therefore, larger birds have relatively more flexible feathers than smaller birds. The more flexible primary feathers of large birds may reduce stresses on the wing skeleton during take-off and landing and also make these feathers less susceptible to mechanical failure. Conversely, the greater flexibility of these feathers may also reduce their capacity to generate aerodynamic lift.  相似文献   

15.
Of several hypotheses proposed for the origin of feathers two predominate: feathers evolved for flight, or for thermal insulation. The argument is sometimes made that since wing feathers degenerate with flightlessness, their primary function is aerodynamic, supporting the flight hypothesis. Examination of the primary feathers of flightless carinates reveals little evidence of degeneration. Notwithstanding the impropriety of deducing original from present-day functions, feather structure in flightless carinates does not support one evolutionary hypothesis over any other.
Ratites have markedly different primary feathers from flightless carinates and this might be attributable to the longer time since the loss of flight.  相似文献   

16.
Ptilochronology does not appear to be a reliable measure of the daily growth rate of contour feathers or the nutritional state of nestling Pied Flycatchers Ficedula hypoleuca . Growth bars on primary remiges, which according to ptilochronology represent a day's increment of feather growth, are only about half as wide as the actual daily increase in the length of these feathers while they are growing. The average width of the growth bars on primaries was also uncorrelated with other commonly used measures of growth or nutritional status (increase in body mass or in the size of the wing or tarsus), although these were highly correlated with each other. In adult flycatchers, the average width of the growth bars on tertials was unrelated to the average bar width on greater coverts, although both feathers are replaced during the winter (prenuptial) moult. This suggests that the growth bars either do not reflect the nutritional status of adults during normal periods of moult or that contour feathers in different tracts vary in their sensitivity to the nutritional status of the moulting bird. To our knowledge, this is the first time that anyone has attempted to apply ptilochronology to nestlings. It is noteworthy that a method of measuring growth and nutritional state that has shown promise when applied to induced feathers of adult birds seems to be unreliable when applied to the developing plumage of nestlings, and perhaps the normal (not-induced) replacement plumage of adults.  相似文献   

17.
The functional life span of feathers is always much less than the potential life span of birds, so feathers must be renewed regularly. But feather renewal entails important energetic, time and performance costs that must be integrated into the annual cycle. Across species the time required to replace flight feather increases disproportionately with body size, resulting in complex, multiple waves of feather replacement in the primaries of many large birds. We describe the rules of flight feather replacement for Hemiprocne mystacea, a small, 60g tree swift from the New Guinea region. This species breeds and molts in all months of the year, and flight feather molt occurs during breeding in some individuals. H. mystacea is one to be the smallest species for which stepwise replacement of the primaries and secondaries has been documented; yet, primary replacement is extremely slow in this aerial forager, requiring more than 300 days if molt is not interrupted. We used growth bands to show that primaries grow at an average rate of 2.86 mm/d. The 10 primaries are a single molt series, while the 11 secondaries and five rectrices are each broken into two molt series. In large birds stepwise replacement of the primaries serves to increase the rate of primary replacement while minimizing gaps in the wing. But stepwise replacement of the wing quills in H. mystacea proceeds so slowly that it may be a consequence of the ontogeny of stepwise molting, rather than an adaptation, because the average number of growing primaries is probably lower than 1.14 feathers per wing.  相似文献   

18.
Rijke, A.M., Jesser, W.A., Evans, S.W & Bouwman, H. 2000. Water repellency and feather structure of the Blue Swallow Hirundo atrocaerulea. Ostrich 71 (1 & 2): 143–145.

The Blue Swallow is an endangered species in southern Africa and is probably the most endangered passerine. It is restricted to escarpments with grasslands above 1 000 m where mists are frequent. It appears to forage on the wing even in thick mist raising the question of feather wettability in relation to its adaptation. Extensive physical and behaviourial adaptations are known to occur in a wide variety of birds to deal with the problem of shedding water continuously. To study the water repellency and resistance to water penetration of Blue Swallow feathers, we have examined the microscopic structure of head, back, throat, breast and abdominal feathers as well as remiges and tail feathers by transmission light microscopy. The width (2R) and separation (2D) of rami and barbules have been measured and were used to calculate the parameter (R + D)/R that serves as an indicator ofwater shedding potential. For the remiges and tail feathers the values of the (R+D)/R range from 5 to 10 which is comparable to values for other terrestrial birds. However, for body feathers the range is from 10 (head) and 35 (abdomen)-higher than previously observed for any other bird including Swifts, Apodidae. Blue Swallow feathers are thus the most effective feather yet discovered at repelling water drops. The water repellency is highest in those feathers that are relatively shielded From the direct impact of small water drops (throat, breast, abdomen, back). By contrast, the flight feathers must possess a relatively large resistance to water penetration to avoid becoming waterlogged and this is coupled to low (R+D)/R values. Values for the barbules lay between 2 and 6—the same as found for other bird families—supporting an earlier conclusion that they have little direct effect in repelling water.  相似文献   

19.
Many organisms show well‐defined latitudinal clines in morphology, which appear to be caused by spatially varying natural selection, resulting in different optimal phenotypes in each location. Such spatial variability raises an interesting question, with different prospects for the action of sexual selection on characters that have a dual purpose, such as locomotion and sexual attraction. The outermost tail feathers of barn swallows (Hirundo rustica) represent one such character, and their evolution has been a classic model subject to intense debate. In the present study, we examined individuals from four European populations to analyze geographical variation in the length and mass of tail feathers in relation to body size and wing size. Tail feather length differed between sexes and populations, and such variation was a result of the effects of natural selection, acting through differences in body size and wing size, as well as the effects of sexual selection that favours longer tails. The extra enlargement of the tail promoted by sexual selection (i.e. beyond the natural selection optimum) could be achieved by increasing investment in ornaments, and by modifying feather structure to produce longer feathers of lower density. These two separate processes accounting for the production of longer and more costly tail feathers and less dense feathers, respectively, are consistent with the hypothesis that both Zahavian and Fisherian mechanisms may be involved in the evolution of the long tails of male barn swallows. We hypothesize that the strength of sexual selection increases with latitude because of the need for rapid mating as a result of the short duration of the breeding season at high latitudes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 925–936.  相似文献   

20.
Parent-offspring conflicts lead the offspring to evolve reliable signals of individual quality, including parasite burden, which may allow parents to adaptively modulate investment in the progeny. Sex-related variation in offspring reproductive value, however, may entail differential investment in sons and daughters. Here, we experimentally manipulated offspring condition in the barn swallow (Hirundo rustica) by subjecting nestlings to an immune challenge (injection with bacterial lipopolysaccharide, LPS) that simulates a bacterial infection, and assessed the effects on growth, feather quality, expression of morphological (gape coloration) and behavioral (posture) begging displays involved in parent-offspring communication, as well as on food allocation by parents. Compared to sham-injected controls, LPS-treated chicks suffered a depression of body mass and a reduction of palate color saturation. In addition, LPS treatment resulted in lower feather quality, with an increase in the occurrence of fault bars on wing feathers. The color of beak flanges, feather growth and the intensity of postural begging were affected by LPS treatment only in females, suggesting that chicks of either sex are differently susceptible to the immune challenge. However, irrespective of the effects of LPS, parents equally allocated food among control and challenged offspring both under normal food provisioning and after a short period of food deprivation of the chicks. These results indicate that bacterial infection and the associated immune response entail different costs to offspring of either sex, but a decrease in nestling conditions does not affect parental care allocation, possibly because the barn swallow adopts a brood-survival strategy. Finally, we showed that physiological stress induced by pathogens impairs plumage quality, a previously neglected major negative impact of bacterial infection which could severely affect fitness, particularly among long-distance migratory birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号