首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
程海云  段家充  张超  潘昭 《昆虫学报》2022,65(9):1204-1221
【目的】应用线粒体COI和核CAD基因片段探讨自动条形码间隔探索(automatic barcode gapdiscovery, ABGD)、广义混合Yule溯祖模型(generalized mixed Yule coalescent, GMYC)、贝叶斯泊松树进程(Bayesian Poisson tree processes, bPTP)和贝叶斯系统发育和系统地理分析(Bayesianphylogenetics and phylogeography, BPP) 4种分析方法在芫菁科(Meloidae)昆虫分子物种界定中的适用性。【方法】分别基于COI, CAD和COI+CAD串联序列数据集,应用ABGD, GMYC, bPTP和BPP 4种方法对中国北方芫菁科常见的6属(沟芫菁属Hycleus、斑芫菁属Mylabris、豆芫菁属Epicauta、绿芫菁属Lytta、星芫菁属Megatrachelus和短翅芫菁属Meloe)18个形态种进行分子物种界定,并与形态学鉴定结果进行比较。【结果】利用COI+CAD串联序列数据集所得物种界定结果与形态鉴定结果一致;COI数据集使用ABGD和GMYC方法的界定结果与形态鉴定结果一致,而bPTP划分的物种数较形态鉴定结果多;基于CAD序列在3种单基因物种界定方法的结果中,除GMYC与形态划分一致外,其余均显示部分结果与形态划分不同。【结论】在芫菁科分子物种界定中,多基因联合序列、多种界定方法分析所得结果优于单一基因片段和界定方法的分析结果。本研究的结果为芫菁科昆虫的分子物种界定和整合分类提供了数据支持和参考。  相似文献   

2.
3.
The genus Potamometra Bianchi, 1896 represents big rheophilic semi-aquatic bugs that typically inhabit middle-altitude mountainous streams. Here, we integrated molecular and morphological data for delimiting species boundaries and understanding the evolutionary history of the genus Potamometra. Twenty-seven complete mitochondrial genomes of Potamometra were sequenced, with samples representing most of the known geographically distributed locations around the Sichuan Basin. The results of different species delimitation methods (ABGD, bPTP, GMYC and BPP) based on the monolocus or multilocus data strongly supported the existence of two cryptic new species (Potamometra anderseni Zheng, Ye & Bu, sp. nov. and Potamometra zhengi Zheng, Ye & Bu, sp. nov.) although more entities were found in the tree-based delimitation methods. The two new species were successfully validated using morphological characters within a detailed taxonomic framework. Phylogenetic analyses supported the reciprocal monophyly of the seven highly node-supported clades, which were matched with the five known species and two new taxa. A novel gene arrangement pattern that two trnF (trnF1 and trnF2) genes separated by an intergenic spacer (IGS) were found in all the species except the sister group of Potamometra berezowskii Bianchi, 1896 and Potamometra linnavuorii Chen, Nieser & Bu, 2016. This gene rearrangement event could be explained by the tandem duplication and random loss (TDRL) model. Our study emphasized that the combination of molecular sequence data, morphological characters and mitochondrial structural information could improve the accuracy of species delimitation.  相似文献   

4.
5.
6.
Fungal mycoparasitism—fungi parasitizing other fungi—is a common lifestyle in some basal lineages of the basidiomycetes, particularly within the Tremellales. Relatively nonaggressive mycoparasitic fungi of this group are in general highly host specific, suggesting cospeciation as a plausible speciation mode in these associations. Species delimitation in the Tremellales is often challenging because morphological characters are scant. Host specificity is therefore a great aid to discriminate between species but appropriate species delimitation methods that account for actual diversity are needed to identify both specialist and generalist taxa and avoid inflating or underestimating diversity. We use the BiatoropsisUsnea system to study factors inducing parasite diversification. We employ morphological, ecological, and molecular data—methods including genealogical concordance phylogenetic species recognition (GCPSR) and the general mixed Yule‐coalescent (GMYC) model—to assess the diversity of fungi currently assigned to Biatoropsis usnearum. The degree of cospeciation in this association is assessed with two cophylogeny analysis tools (ParaFit and Jane 4.0). Biatoropsis constitutes a species complex formed by at least seven different independent lineages and host switching is a prominent force driving speciation, particularly in host specialists. Combining ITS and nLSU is recommended as barcode system in tremellalean fungi.  相似文献   

7.
Over the past decade, molecular approaches to species delimitation have seen rapid development. However, species delimitation based on a single locus, for example, DNA barcodes, can lead to inaccurate results in cases of recent speciation and incomplete lineage sorting. Here, we compare the performance of Automatic Barcode Gap Discovery (ABGD), Bayesian Poisson tree processes (PTP), networks, generalized mixed Yule coalescent (GMYC) and Bayesian phylogenetics and phylogeography (BPP) models to delineate cryptic species previously detected by DNA barcodes within Tanytarsus (Diptera: Chironomidae) non‐biting midges. We compare the results from analyses of one mitochondrial (cytochrome c oxidase subunit I [COI]) and three nuclear (alanyl‐tRNA synthetase 1 [AATS1], carbamoyl phosphate synthetase 1 [CAD1] and 6‐phosphogluconate dehydrogenase [PGD]) protein‐coding genes. Our results show that species delimitation based on multiple nuclear DNA markers is largely concordant with morphological variation and delimitations using a single locus, for example, the COI barcode. However, ABGD, GMYC, PTP and network models led to conflicting results based on a single locus and delineate species differently than morphology. Results from BPP analyses on multiple loci correspond best with current morphological species concept. In total, 10 lineages of the Tanytarsus curticornis species complex were uncovered. Excluding a Norwegian population of Tanytarsus brundini which might have undergone recent hybridization, this suggests six hitherto unrecognized species new to science. Five distinct species are well supported in the Tanytarsus heusdensis species complex, including two species new to science.  相似文献   

8.
Species delimitation is difficult for taxa in which the morphological characters are poorly known because of the rarity of adult morphs or sexes, and in cryptic species. In primitively segmented spiders, family Liphistiidae, males are often unknown, and female genital morphology – usually species‐specific in spiders – exhibits considerable intraspecific variation. Here, we report on an integrative taxonomic study of the liphistiid genus Ganthela Xu & Kuntner, 2015, endemic to south‐east China, where males are only available for two of the seven morphological species (two known and five undescribed). We obtained DNA barcodes (cytochrome c oxidase subunit I gene, COI) for 51 newly collected specimens of six morphological species and analysed them using five species‐delimitation methods: DNA barcoding gap, species delimitation plugin [P ID(Liberal)], automatic barcode gap discovery (ABGD), generalized mixed Yule‐coalescent model (GMYC), and statistical parsimony (SP). Whereas the first three agreed with the morphology, GMYC and SP indicate several additional species. We used the consensus results to delimit and diagnose six Ganthela species, which in addition to the type species Ganthela yundingensis Xu, 2015, completes the revision of the genus. Although multi‐locus phylogenetic approaches may be needed for complex taxonomic delimitations, our results indicate that even single‐locus analyses based on the COI barcodes, if integrated with morphological and geographical data, may provide sufficiently reliable species delimitation. © 2015 The Linnean Society of London  相似文献   

9.
Twelve wild collections and one commercial strain were used to characterize breeding systems and to develop molecular identities in the Arvenses section of the genus Agaricus, which includes the “horse mushroom” A. arvensis. Two morphotypes were identified based on macro- and micromorphological features. However, not all collections could be delimited by conventional taxonomic characters. Sequencing of the small subunit intergenic spacer (ITS) region (368 to 370 bp) of the rRNA genes clearly resolved the 13 collections into two clusters consistent with the identified morphotypes. Single-spore progenies and mating type testers were established and used to test intra- and interstock compatibility. The two compatibility groups identified were consistent with ITS clusters. Compatibility group I stocks readily interbred within the constraints of a unifactorial heterothallic system with a multiallelic mating type factor. Compatibility group II had a more restricted breeding pattern, and interactions were difficult to predict on the basis of mating type. Morphological data, ITS sequences, and the ability to interbreed suggest that these collections are part of a complex of interrelated species. Single-spore, homokaryotic isolates from both compatibility groups were able to fruit in compost culture, and two of the collections may represent natural homokaryotic fruiting. We conclude that species from the section Arvenses have versatile unifactorial heterothallic life cycles that permit both interbreeding and homokaryotic fruiting.  相似文献   

10.
11.
The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was an effective approach for delimitating Melampsora species on willows in China.  相似文献   

12.
The identification of the conventionally accepted species of Clavulina (Cantharellales, Basidiomycota) in Europe (Clavulina amethystina, Clavulina cinerea, Clavulina cristata, and Clavulina rugosa) is often difficult and many specimens are not straightforwardly assignable to any of those four species, which is why some authors have questioned their identity. In order to assess the status of those species, a morphological examination was combined with the molecular analysis of the ITS region. The same six major clades were obtained in the Bayesian and parsimony phylogenetic analyses, and all six clades were well-supported at least by one of the analyses. Morphological characters, such as the overall branching pattern, the presence and intensity of grey colour, the cristation of the apices, and basidiospore size and shape were to various extents correlated with the phylogenetic signal obtained from the ITS region. The congruence between the molecular analyses and morphology, rather than geographical origin, suggests the existence of several species that can be delimited using a combined phylogenetic and morphological species recognition. The analyses revealed that C. cristata and C. rugosa are well-delimited species. In contrast, more than one taxa could be subsumed under the names C. amethystina and C. cinerea, the taxonomical complexity of which is discussed. The ITS region is proved to be adequate to separate phylogenetic species of Clavulina.  相似文献   

13.
Conflict among data sources can be frequent in evolutionary biology, especially in cases where one character set poses limitations to resolution. Earthworm taxonomy, for example, remains a challenge because of the limited number of morphological characters taxonomically valuable. An explanation to this may be morphological convergence due to adaptation to a homogeneous habitat, resulting in high degrees of homoplasy. This sometimes impedes clear morphological diagnosis of species. Combination of morphology with molecular techniques has recently aided taxonomy in many groups difficult to delimit morphologically. Here we apply an integrative approach by combining morphological and molecular data, including also some ecological features, to describe a new earthworm species in the family Hormogastridae, Hormogaster abbatissae sp. n., collected in Sant Joan de les Abadesses (Girona, Spain). Its anatomical and morphological characters are discussed in relation to the most similar Hormogastridae species, which are not the closest species in a phylogenetic analysis of molecular data. Species delimitation using the GMYC method and genetic divergences with the closest species are also considered. The information supplied by the morphological and molecular sources is contradictory, and thus we discuss issues with species delimitation in other similar situations. Decisions should be based on a profound knowledge of the morphology of the studied group but results from molecular analyses should also be considered.  相似文献   

14.
Current taxon assignments at the species level are frequently discordant with DNA-based analyses. Recent studies on tiger beetles in the Cicindela hybrida complex identified discordance between mtDNA patterns and the entities currently defined by the taxonomic literature. To test the accuracy of morphologically delimited groups, five named taxa (species) from 24 representative sampling sites across Europe were scored for 41 external morphological characters. Three of the named taxa were 'diagnosable', that is, defined by between one and three characters unique to each group. Newly sequenced ITS1 and existing mitochondrial cox1 markers established 20 and 22 different haplotypes, respectively, but only cox1 produced (four) diagnosable units. Phylogenetic analysis and statistical parsimony networks showed poor congruence of character variation with the taxonomic entities (and each other). Variation in morphological characters was therefore tested directly for association with DNA-based nesting groups at various hierarchical levels using permutational contingency analysis. Significant statistical associations of 11 (of 13 variable) morphological characters were observed with nesting groups from ITS1 and mitochondrial DNA markers, predominantly at the 4-step level. The analysis demonstrates the need for formal tests of congruence with morphological variation at the level of individual characters, a step that is omitted from recent studies of 'integrative taxonomy'. In addition, statistical correlation of particular morphological characters with DNA-based nesting groups can identify the lowest hierarchical level at which various character sets show congruence, as a means to define evolutionarily separated entities supported by diverse data sources.  相似文献   

15.
Two sympatric species of Platygyra have been identified from Hong Kong waters: i.e., P. sinensis and P. pini. The former has been further subdivided into 4 morphotypes based on colony growth form as follows: classic, encrusting, hillocky, and long-valley. Taxonomic confusion raised by overlapping morphological variations and frequent sympatric occurrences, however, has posed problems in relation to Platygyra ecology and population dynamics. This study attempted to differentiate Platygyra pini and morphotypes of P. sinensis by both morphological and ITS1, 5.8S, and partial ITS2 ribosomal DNA sequence analysis. Morphological data based on 9 skeletal characters were subjected to multivariate analysis. No clear groupings were obtained using a multidimensional scaling plot. Most parsimony analysis was conducted using either the rDNA data set including ITS1, 5.8S, and partial ITS2 or the ITS1 region only. Maximum parsimony (MP) and neighbor-joining (NJ) trees obtained from both data sets, clustered samples of P. sinensis and P. pini into 2 clades. The interspecific Kimura 2-parameter sequence divergence value (k2) obtained by the former rDNA data set was 14.275 ± 0.507%, which is greater than the intraspecific values (1.239 ± 1.147% for P. sinensis and 0.469 ± 0.364% for P. pini), indicating that this marker of ITS1, 5.8S, and ITS2 contains substantially high levels of inherent diversity and is useful in resolving the problematic taxonomy of Platygyra.  相似文献   

16.
A new poroid wood-inhabiting fungal species, Ceriporiopsis kunmingensis sp. nov., is proposed based on morphological and molecular characters. The species is characterized by resupinate basidiocarps with pale cinnamon-buff to ochreous color when dry; generative hyphae unbranched and subparallel along the tubes; presence of hyphal ends; allantoid basidiospores, 4.5–5 × 1.5–2 μm. The internal transcribed spacer (ITS) and large subunit (LSU) regions of nuclear ribosomal RNA gene sequences of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic analysis based on molecular data of ITS?+?nLSU sequences showed that C. kunmingensis belonged to the phlebioid clade, formed a monophyletic lineage with a strong support (100% BS, 100% BP, 1.00 BPP), and was closely related to Phlebia aurea, and then grouped with P. livida and P. subserialis. Both morphological and molecular characters confirmed the placement of the new species in Ceriporiopsis.  相似文献   

17.
Molecular systematic studies have changed the face of algal taxonomy. Particularly at the species level, molecular phylogenetic research has revealed the inaccuracy of morphology‐based taxonomy: Cryptic and pseudo‐cryptic species were shown to exist within many morphologically conceived species. This study focused on section Rhipsalis of the green algal genus Halimeda. This section was known to contain cryptic diversity and to comprise species with overlapping morphological boundaries. In the present study, species diversity within the section and identity of individual specimens were assessed using ITS1–5.8S–ITS2 (nrDNA) and rps3 (cpDNA) sequence data. The sequences grouped in a number of clear‐cut genotypic clusters that were considered species. The same specimens were subjected to morphometric analysis of external morphological and anatomical structures. Morphological differences between the genotypic cluster species were assessed using discriminant analysis. It was shown that significant morphological differences exist between genetically delineated species and that allocation of specimens to species on the basis of morphometric variables is nearly perfect. Anatomical characters yielded better results than external morphological characters. Two approaches were offered to allow future morphological identifications: a probabilistic approach based on classification functions of discriminant analyses and the classical approach of an identification key.  相似文献   

18.
Australia has a very rich and diverse large branchiopod fauna with approximately 140 described or provisionally delimited species, but only one species of Triops, Triops australiensis (Spencer and Hall 1895), is currently recognized. Previous studies identified extensive genetic diversity within T. australiensis that suggested the presence of cryptic species. Herein, we employed an integrative approach to taxonomy to delimit putative species, integrating COI and EF1α sequence data and morphological data. Putative species were initially delimited based on COI by two computational approaches (GMYC and ABGD). The results were interpreted in the light of several species concepts, with particular emphasis on reproductive isolation. Twenty to 27 genetic lineages were delimited. Of these, up to 26 represent species following an evolutionary or phylogenetic species concept. Eighteen are biological species, though reproductive isolation could not be unambiguously established for allopatric species or species without known males. The level of co-occurrences was exceptionally high for Triops, with up to three syntopic and six sympatric species. Species delimitation was impeded by extensive overlap between intraspecific variability and interspecific variation in the genetic as well as morphological datasets. Without prior delimitation of putative species via COI, morphological delimitation would have been impossible. A potential explanation for the morphological variability is the retention of ancestral polymorphisms over long periods of time and across multiple speciation events without subsequent differentiation.  相似文献   

19.
The morphological variation of four Baltic representatives of the genus Potentilla section Aurea–P. neumanniana, P. arenaria, P. subarenaria and P. crantzii was studied with multivariate methods. Altogether 41 characters were used. The most important characters for the phenetical classification are those of the epidermis: characters of stellate and glandular hairs and numbers of cells. Macromorphological characters are less important, the most useful of these being the length of sepals and stipules and the number of teeth of the central leaflet. All four species are significantly distinct. Even P. subarenaria, a putative hybrid of P. arenaria and P. neumanniana, is clearly separated. At the same time, the species are morphologically quite variable, and it is possible to distinguish subclusters (morphotypes) within P. neumanniana, P. subarenaria and P. crantzii, which are also statistically distinct. The varieties described by Wolf (1908) under the name P. verna (P. neumanniana) do not agree well with the morphs in our material. However, it can be admitted that var. typica and var. neumanniana axe prevalent, var. pseudo-incis? and var. incis? occur occasionally; only var. longifoli? can be quite clearly delimited.  相似文献   

20.
Utricularia sect. Foliosa Kamiénski comprises three recognized species, U. amethystina Salzm. ex A.St.-Hil. & Girard, U. tricolor A.St.-Hil., and U. tridentata Sylvén, delimited based mainly on shape and structure of the corolla. In comparison with the two latter members of the section, U. amethystina forms a complex of morphological variants, reflected taxonomically by the previous recognition of 31 synonyms. In his monograph of the genus, Taylor synonymized these taxa based primarily on his observation of continuous morphological variation of the flowers. In the same treatment he also suggested a future taxonomic re-evaluation could re-establish two, three or more taxa. Here we examine this question utilizing morphometric analyses of floral variation across most of the synonyms mentioned above, within populations from across their Neotropical distribution. Based on both morphological and geographic characters we identify strongly differentiated morphotypes. Our data provide support for both the maintenance of taxa previously recognised as synonyms under U. amethystina, and the resurrection of taxa to species status, namely U. bicolor, U. damazioi, U. lindmanii and U. hirtella, and four other putative new taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号