首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Agricultural intensification has caused drastic declines in the area and species richness of semi-natural grasslands across Europe. Novel habitats, such as power line clearings, provide alternative habitats and niches for grassland species, and might therefore mitigate these declines. However, it is not fully understood which environmental factors determine the occurrence of grassland species in the clearings. Identifying the most important drivers for grassland species occurrence would help understand the value of the clearings for grassland conservation and target enhanced management into clearings with most potential as grassland habitat. We studied the effects of local environmental conditions, and past and present connectivity to semi-natural grasslands, on the species richness of grassland plants and butterflies in 43 power line clearings in Finland. The results of generalized linear models and hierarchical partitioning showed that increasing time since clear-cut and amount of clearing residue decreased the species richness of both species groups, while the cover of mesic habitats increased it. However, the two species groups showed also divergent responses. Present-day local environmental conditions appeared to be the sole driver of grassland butterfly species richness, whereas the richness of grassland plants was related both to current conditions and historical connectivity to grasslands in 1870–1880s. This suggests the presence of an extinction debt in the studied grassland plant communities, emphasizing the need for enhanced management to increase suitable grassland habitat in the clearings. This would diminish the potential future losses of grassland plant species in the clearings and create valuable habitat for grassland butterflies as well.  相似文献   

2.

Questions

Small, remnant habitats embedded in degraded, human-dominated landscapes are generally not a priority in conservation, despite their potential role in supporting landscape-scale biodiversity. To warrant their inclusion in conservation management and policy, we question under which conditions they may exhibit the largest conservation value.

Location

Nine landscapes spread across the counties of Stockholm and Södermanland, Sweden.

Methods

Per landscape, plant communities were surveyed in 6 and 12 1 × 1 m2 plots across large, intact semi-natural grasslands and small remnant grasslands, respectively. These two contrasting grassland types served as a model system. A topsoil sample was taken in each plot to determine habitat quality in terms of soil pH, plant-available P, and C:N ratio. We used a joint species distribution model to analyse the extent to which grassland type and habitat quality define and predict resident community diversity and composition, including whether they support grassland specialists.

Results

At the landscape scale, the combined remnant grasslands sustained diverse plant communities which did include a significant subset of habitat specialists. Yet, the contribution of individual remnants clearly varied with local-scale habitat quality; soil phosphorus availability lowered plot-level species richness, mostly by constraining the occurrence of grassland specialists. Semi-natural grassland communities were comparatively insensitive to variation in soil phosphorus availability.

Conclusions

The combined habitat amount and the significant number of habitat specialists sustained by remnant grasslands with high habitat quality, shows they can represent a valuable resource to support landscape-scale biodiversity conservation. This offers no wildcard to neglect the continued biotic and abiotic threats on semi-natural grassland plant diversity such as chronic and accumulating P eutrophication, discontinuation of management or poor matrix permeability, as semi-natural grasslands harbour the majority of habitat specialists, while sourcing surrounding remnant grassland communities.
  相似文献   

3.
The alteration and fragmentation of native tallgrass prairie in the Midwestern United States has created a need to identify other land types with the ability to support grassland butterfly species. This study examines butterfly usage of marginal grasslands, which consist of semi-natural grasslands existing within in a larger agricultural matrix, compared to grasslands managed for conservation of prairie species. Using generalized linear mixed models we analyzed how land purpose (marginal vs. conservation grasslands) affected butterfly abundance. We found grassland butterfly species to be significantly more common on conservation grasslands, whereas generalist species were significantly more common on marginal grasslands. Results of ordination analyses indicated that while many species used both types of habitats, butterfly species assemblages were distinct between habitat types and that edge to interior ratio and the floristic quality index of sites were important habitat characteristics driving this distinction. Within conservation grasslands we examined the relationship between butterfly abundance and the planting diversity used in restoring each site. We found higher diversity restorations hosted more individuals of butterflies considered habitat generalists, as well as species considered to be of conservation concern.  相似文献   

4.
Many grassland specialist plant populations in Europe have become restricted to remnant habitats. The performance of these populations depends on both species‐specific traits and local and landscape level aspects of habitat quality. Understanding which specific local or landscape level conditions determine the performance of grassland species populations in remnant habitats would help design the restoration of the habitats and to detect the conditions that favour the long‐term persistence of grassland species in them. Such information is especially needed in urbanised landscapes, where remnant habitats engulfed by urban land use types may experience increased erosion, higher temperatures and invasion by alien species. This study investigates the population performance determinants of Carex caryophyllea (VU), a grassland specialist, in 43 remnant grasslands in an urban‐rural gradient in Finland. The population performance was assessed with metrics of persistence, establishment and reproduction, and related to environmental conditions with generalized additive models and redundancy analysis. The most important positive determinants for the performance of C. caryophyllea populations were disturbance through management or ground erosion, a warm microclimate, large habitat area and high historical connectivity to suitable grassland habitats. Present connectivity to other C. caryophyllea populations had a weak and near‐significant positive relationship with population performance. Urbanisation of the surrounding landscape correlated with population performance as well, possibly due to the high historical cover of grasslands in presently urbanised landscapes. The results imply that the most effective restoration method of remnant C. caryophyllea populations would be reinstating disturbance regimes in overgrown habitats with warm microclimates close to suitable habitats and other existing populations, whether urban or rural. This would counteract the species future decline due to possible extinction debts and help the species persist in the study area in the long term.  相似文献   

5.
Benjamin Krause  Heike Culmsee 《Flora》2013,208(5-6):299-311
There is a growing concern that land use intensification is having negative effects on semi-natural grasslands and that it leads to a general loss of biodiversity among all types of formerly extensively managed grasslands of poor to medium nutrient richness. Since the 1950s, many Central European uplands have been subject to an increase in grassland cover as a result of changes in land use practices. Using such a landscape in Lower Saxony, Germany, as a model region, we assessed environmental factors that control grassland diversity, including plant community composition, species richness and pollination trait composition. In 2007, 189 vegetation sampling sites were randomly distributed among grasslands covering some 394 ha within a 2500 ha study area. Plant communities were classified using TWINSPAN and the effects of environmental factors (soil, topography, current management and habitat continuity) were analysed by canonical correspondence analysis and regression analysis reducing for the effects of spatial autocorrelation by using principal coordinates of neighbour matrices.We found a wide range of six species-poor (<15 plant spp.) to extremely species-rich (>27 spp.) grassland types under mesic to dry site conditions, including sown, Cynosurion, Arrhenatherion and semi-natural grasslands. Grassland community composition was best explained by soil factors and species richness and pollination type composition by combined effects of current management and habitat continuity. During the 1950/60s, the extent of grassland area within the studied landscape rapidly increased to more than double its previous extent, and in 2007, grasslands comprised 16%. Natura 2000 grassland types comprised 1% of the surveyed site and medium-rich, high-nature-value grasslands a further 5%. While the number of wind-pollinated plant species was equal among all grassland types, there was a parallel decline in insect-pollinated plants and overall median species richness in the grassland communities along a gradient of increasing land use intensity (mowing, nutrient supply). Moreover, insect-pollinated plants occurring in intensively managed grasslands were found to additionally have the ability for self-pollination. Species-rich grasslands – including semi-natural grasslands and a semi-improved, species-rich Arrhenatherion community – occurred exclusively on old sites (with >100 years of habitat continuity) that had been used for traditional sheep grazing (environmental contracting). Medium-rich Arrhenatherion grasslands were established primarily on less productive, formerly arable fields (<30 years). We conclude that conservation efforts should focus on extant species-rich grassland types and should aim to implement traditional land use practices such as sheep grazing. Additional restoration efforts should focus on establishing new grasslands on less productive sites in the proximate surroundings of species-rich grasslands to facilitate seed dispersal, but nitrogen deposition should be buffered where appropriate. These measures would enhance the interaction between nature reserves and agricultural grasslands and thus improve the ecological quality of grasslands at the landscape scale.  相似文献   

6.
Although semi-natural grasslands in Europe are declining there is often a time delay in the local extinction of grassland species due to development of remnant populations, i.e., populations with an extended persistence despite a negative growth rate. The objectives of this study were to examine the occurrence of remnant populations after abandonment of semi-natural grasslands and to examine functional traits of plants associated with the development of remnant populations. We surveyed six managed semi-natural grasslands and 20 former semi-natural grasslands where management ceased 60–100 years ago, and assessed species response to abandonment, assuming a space-for-time substitution. The response of species was related to nine traits representing life cycle, clonality, leaf traits, seed dispersal and seed mass. Of the 67 species for which data allowed analysis, 44 species declined after grassland abandonment but still occurred at the sites, probably as remnant populations. Five traits were associated with the response to abandonment. The declining but still occurring species were characterized by high plant height, a perennial life form, possession of a perennial bud bank, high clonal ability, and lack of dispersal attributes promoting long-distance dispersal. Traits allowing plants to maintain populations by utilizing only a part of their life cycle, such as clonal propagation, are most important for the capacity to develop remnant populations and delay local extinction. A considerable fraction of the species inhabiting semi-natural grasslands maintain what is most likely remnant populations after more than 60 years of spontaneous succession from managed semi-natural grasslands to forest.  相似文献   

7.
Changes of agricultural practices have led to decline of semi-natural habitats sustained by traditional animal husbandry in many European regions. The abandonment of semi-natural pastures leads to increase of vascular plant biomass and subsequent decline of weak competitors such as bryophytes. Re-establishing traditional animal husbandry may potentially restore biodiversity but the success of such measures remains insufficiently known. In this study, we asked if re-establishing cattle grazing on previously abandoned grasslands will restore their bryophyte communities. The effect of cattle grazing on bryophyte communities of mesic semi-natural grasslands was studied in south-western Finland in a comparison of (i) continuously grazed pastures, (ii) previously abandoned pastures where grazing was re-established during 1990s, and (iii) abandoned pastures, where grazing had ceased during late 1960s to early 1980s. The average cover, species richness, species density and species diversity of bryophytes were significantly higher in the continuously grazed than in the abandoned grasslands. Ordination analyses revealed clear differences also in community structure between the management classes. Re-established grasslands were ecologically heterogeneous and situated in between the continuously grazed and abandoned grasslands in all characteristics, indicating variable effect of the restoration measure. Seventeen bryophyte species were recognized as significant indicators of the three grassland classes, four of which could be used as indicators of valuable grassland habitats. Although there was variation in the consequences of re-introduction of grazing, the results give evidence of positive effect of grazing on regaining bryophyte diversity of abandoned grasslands.  相似文献   

8.
Size-related deterioration of semi-natural grassland fragments in Sweden   总被引:2,自引:0,他引:2  
Abstract. One of the most dramatic landscape changes during the 20th century in Sweden, like in most of Europe, has been the reduction and fragmentation of semi-natural grasslands. Using a set of remnant semi-natural grasslands, chosen to be as similar as possible, but differing in size, we have examined whether size of remnant fragments of traditionally managed semi-natural grasslands in Sweden is related to patterns of species richness and composition. We focused on edge-to-interior relationships, since we expected that a possible impact from invasive habitat generalists would be manifested in a gradient from the edge of fragments to their interior. We found no relationship between size of grassland fragments and (a) overall species richness, (b) species richness at different spatial scales, and (c) abundance of some typical invader species or species characteristic of semi-natural grasslands. However, the results indicated that larger grasslands have a comparatively larger number of species in the edges, whereas the opposite pattern was found in smaller grasslands. The similarity in species composition between the edge and the interior of the pastures also increased with grassland size. Thus, even though the overall species richness is still unaffected by reduction in grassland fragment size, the edges of smaller grasslands show signs of degradation, i.e. reduction in species richness and a decreased similarity to the grassland interior. We suggest that these kinds of effects may be early signs of fragmentation effects that in the future will result in species loss even if the present distribution of semi-natural grasslands is maintained.  相似文献   

9.
Landscape effects on butterfly assemblages in an agricultural region   总被引:11,自引:0,他引:11  
We examined the butterfly fauna at 62 sites in southeastern Sweden within a region exhibiting high variation in the landscape surrounding the studied grasslands. The landscape varied from an intensively-managed agricultural landscape with a large amount of open fields to a landscape with a high amount of deciduous forest/semi-natural grassland. We made 12 179 observations of 57 species of butterflies. The amount of neighbouring deciduous forest/semi-natural grassland, with >25% tree and bush cover, was the most important environmental factor explaining the variation in the butterfly assemblages. Landscape analyses at three different spatial scales showed that the variation in butterfly assemblages could be explained only at the largest scale (radius 5000 m) and not at the smaller ones (radii 500 and 2000 m).
Logistic regressions were used to predict presence/absence of butterfly species. Our study indicated that there may be critical thresholds for the amount of habitat at the landscape scale for several butterfly species as well as for species richness. For Melitaea athalia , there was a sharp increase in occupancy probability between 3 and 10% deciduous forests/semi-natural grasslands at the 5000-m scale. For 12 other species, the value for 50% probability of occurrence varied between 2 and 12% deciduous forest/semi-natural grassland. Species which had high occupancy probabilities in landscapes with a low amount of surrounding deciduous forests/semi-natural grasslands were significantly more mobile than others.
Our study highlights the importance of applying a landscape perspective in conservation management, and that single-patch management might fail in maintaining a diverse butterfly assemblage.  相似文献   

10.

Semi-natural grasslands in Japan have decreased due to management abandonment and urbanization over the last 100 years, but they remain in suburban areas in addition to rural areas. Because suburban grasslands have various land-use histories and disturbance regimes, plant and herbivorous insect communities are likely to differ among grassland types. To identify grasslands with high conservation value, we conducted a comprehensive survey of grasshoppers and plants in 150 grasslands with 5 grassland types differing in land-use history and current management in northern Chiba prefecture, Japan. We then analyzed the association of the distributions of grasshopper and plant species compositions. Our results showed that grasshoppers were classified into habitat specialists and generalists. Three out of four habitat specialists were almost exclusively found in semi-natural grasslands and vacant lots, while habitat generalists were commonly observed at the cropland margins. This habitat specialist–generalist distribution gradient corresponded well to that found in plant communities, which was probably due to current disturbance regimes. We suggest that vacant lots as well as semi-natural grasslands have high conservation value for grassland organisms of various taxa in suburban areas, and grasshoppers are candidate indicator species for monitoring grassland environments.

  相似文献   

11.
Plant species richness in central and northern European seminatural grasslands is often more closely linked to past than present habitat configuration, which is indicative of an extinction debt. In this study, we investigate whether signs of historical grassland management can be found in clear‐cuts after at least 80 years as coniferous production forest by comparing floras between clear‐cuts with a history as meadow and as forest in the 1870s in Sweden. Study sites were selected using old land‐use maps and data on present‐day clear‐cuts. Species traits reflecting high capacities for dispersal and persistence were used to explain any possible links between the plants and the historical land use. Clear‐cuts that were formerly meadow had, on average, 36% higher species richness and 35% higher richness of grassland indicator species, as well as a larger overall seed mass and lower anemochory, compared to clear‐cuts with history as forest. We suggest that the plants in former meadows never disappeared after afforestation but survived as remnant populations. Many contemporary forests in Sweden were managed as grasslands in the 1800s. As conservation of remaining grassland fragments will not be enough to reduce the existing extinction debts of the flora, these young forests offer opportunities for grassland restoration at large scales. Our study supports the concept of remnant populations and highlights the importance of considering historical land use for understanding the distribution of grassland plant species in fragmented landscapes, as well as for policy‐making and conservation.  相似文献   

12.
The demand for wood from short rotation coppice (SRC) plantations as a renewable energy source is currently increasing and could affect biodiversity in agricultural areas. The objective was to evaluate the contribution of SRC plantations to phytodiversity in agricultural landscapes assessed as species richness, species–area relationships, Shannon indices, detrended correspondence analysis on species composition, Sørensen similarities, habitat preference proportions, and species proportions found in only one land use. Vegetation surveys were conducted on 12 willow (Salix spp.) and three poplar (Populus spp.) coppice sites as well as on surrounding arable lands, grasslands and forests in central Sweden and northern Germany. SRC plantations were richer in plant species (mean: 30 species per 100 m²) than arable land (10), coniferous forests (13) and mixed forests in Germany (12). Comparing SRC plantations with other land uses, we found lowest similarities in species composition with arable lands, coniferous forests and German mixed forests and highest similarities with marginal grassland strips, grasslands and Swedish mixed forests. Similarity depended on the SRC tree cover: at increased tree cover, SRC plantations became less similar to grasslands but more similar to forests. The SRC plantations were composed of a mixture of grassland (33%), ruderal (24%) and woodland (15%) species. Species abundance in SRC plantations was more heterogeneous than in arable lands. We conclude that SRC plantations form novel habitats leading to different plant species composition compared to conventional land uses. Their landscape‐scale value for phytodiversity changes depending on harvest cycles and over time. As a structural landscape element, SRC plantations contribute positively to phytodiversity in rural areas, especially in land use mosaics where these plantations are admixed to other land uses with dissimilar plant species composition such as arable land, coniferous forest and, at the German sites, also mixed forest.  相似文献   

13.
Restoration of species-rich grasslands on ex-arable land can help the conservation of biodiversity but faces three big challenges: absence of target plant propagules, high residual soil fertility and restoration of soil communities. Seed additions and top soil removal can solve some of these constraints, but restoring beneficial biotic soil conditions remains a challenge. Here we test the hypotheses that inoculation of soil from late secondary succession grasslands in arable receptor soil enhances performance of late successional plants, especially after top soil removal but pending on the added dose. To test this we grew mixtures of late successional plants in arable top (organic) soil or in underlying mineral soil mixed with donor soil in small or large proportions. Donor soils were collected from different grasslands that had been under restoration for 5 to 41 years, or from semi-natural grassland that has not been used intensively. Donor soil addition, especially when collected from older restoration sites, increased plant community biomass without altering its evenness. In contrast, addition of soil from semi-natural grassland promoted plant community evenness, and hence its diversity, but reduced community biomass. Effects of donor soil additions were stronger in mineral than in organic soil and larger with bigger proportions added. The variation in plant community composition was explained best by the abundances of nematodes, ergosterol concentration and soil pH. We show that in controlled conditions inoculation of soil from secondary succession grassland into ex-arable land can strongly promote target plant species, and that the role of soil biota in promoting target plant species is greatest when added after top soil removal. Together our results point out that transplantation of later secondary succession soil can promote grassland restoration on ex-arable land.  相似文献   

14.
To examine the effects of human land use and disturbance on butterfly communities we compared the diversity and structure of communities in relatively undisturbed, semi-natural grassland habitats and highly disturbed, human-modified ones. Comparisons were based on transect counts conducted at 6 study sites at the foot of Mt. Fuji in the cool temperate zone of central Japan during 1995. Out of the six community parameters used in the analyses, the species richness, species diversities H and 1/, and dominance indices were significantly different between the two habitat types stated above. That is, butterfly communities in semi-natural habitats had higher species richness and diversity, and lower dominance indices than those in human-modified ones. This suggests that heavy land modification and disturbance to semi-natural habitats change greatly its butterfly community structure, which, indeed, leads to decreasing species richness and diversity mainly due to the loss of species that are confined to semi-natural habitats. Through the comparisons of various species' characteristics, it was found that the species confined to semi-natural habitats had lower population abundance, fewer generations per year, more restricted local distributions, and narrower geographic range size in Japan than the other component species. Based on our results, it is critical that the persistence of the species that are limited to semi-natural habitats be ensured in order to maintain high species richness and diversity in grassland butterfly communities. Thus, conservation plans that retain as much semi-natural habitat as possible within the process of human grassland use, development, and modification are needed.  相似文献   

15.
Central European calcareous grasslands are considered biodiversity hotspots, but are severely threatened by the change in land-use and by habitat fragmentation. Coniferous forests are typical adjacent habitats to calcareous grasslands, as abandoned calcareous grasslands are often afforested or develop into coniferous forests by succession. To investigate spillover between calcareous grasslands and coniferous forests, a total of 144 pitfall traps for carabid beetles were placed at three different distances (1, 5, 20 m) from the edge in both habitats at eight locations from April to late August. We found that both habitats had a distinct species assemblage and a decrease in spillover with increasing distance from the habitat edge into the adjacent habitat. Calcareous grasslands were more affected by spillover from the adjacent coniferous forests than vice versa because more forest specialists penetrated into calcareous grasslands than grassland specialists penetrated into coniferous forests. We conclude that spillover into small and isolated habitats can severely change species assemblages, which has to be considered in conservation measures. The protection of large sites with small edge-interior ratios can reduce negative effects on species assemblages in endangered calcareous grasslands.  相似文献   

16.
Overgrazing, land use abandonment and increasing recreational activities have altered the vegetation of high-montane and subalpine grassland of the Caucasus. The failure of previous restoration efforts with unsuitable and exotic plant species indicates the need for information on the present vegetation and in which way it might change. Within the Greater Caucasus, we have described and quantified the mountain grassland which develops under characteristic overgrazed and eroded site conditions. Further, we have proposed potential native plant species for revegetation to restore and conserve valuable mountain grassland habitats. We used non-metric dimensional scaling ordination and cluster comparison of functional plant groups to describe a gradient of grassland vegetation cover. For our study region, we identified four major vegetation types with increasing occurrence of ruderal pasture weeds and tall herb vegetation on abandoned hay meadows within the subalpine zone. Within high-montane grassland a decline of plant diversity can be observed on sites of reduced vegetation cover. Due to a low potential of the grassland ecosystem to balance further vegetation cover damage, the long-term loss of diverse habitats can be expected. We conclude with management recommendations to prevent erosion and habitat loss of precious mountain grasslands.  相似文献   

17.
Using data from 46 sites in southern Finland and ordination methods, we examined plant-environment relationships in boreal mesic semi-natural grasslands at two spatial scales (grain sizes), using plots of 0.25 ha and 1 × 1 m. We applied the variation partitioning approach to determine the pure fractions of environmental variable groups and their joint effects on plant species compositional variation in the studied grasslands. The variables related to land-use intensity and high nutrient level (especially phosphorus) had a major role in explaining the species composition at both scales, although soil heterogeneity and habitat characteristics also accounted for a notable amount of the species compositional variation at the 0.25 ha grain size. At the 1 × 1 m grain size, the majority of the species compositional variation was related to the “pure” spatial differences between the studied grasslands (i.e. the site identity (dummy 0/1) variable), whereas the impacts of within-site variation of local environmental factors were considerably smaller. High nutrient levels and variables related to low land-use intensity, e.g. litter accumulation, were also significantly correlated with floristic variation at the 1 × 1 m grain size. Rare and declining grassland species are associated with low-nutrient grassland sites and patches. The main recommendation for the management planning of boreal semi-natural grasslands is that the first restoration attempts should be targeted to areas where nutrient levels, particularly that of phosphorus, are relatively low. Soil properties and plant species composition can provide useful guidelines for defining the correct management procedures for different sites.  相似文献   

18.
Wide-spread fragmentation and isolation of habitats with high nature conservation value lends increasing importance to a better understanding of the factors which determine species richness in isolated habitat patches. Using data of one of the most abundant invertebrate groups in grasslands, Orthoptera, we analysed how species richness and distribution in 60 isolated semi-natural grassland remnants in Austria were affected by five environmental variables (altitude, habitat and land use diversity within each patch, habitat diversity of areas adjacent to each patch, patch size), and related to diversity of their main food source, i.e. vascular plants. We found a significant positive correlation between Orthoptera and vascular plant species richness, with threatened Orthoptera species having the lowest correlation coefficients. Life form diversity of plants was only moderately positively correlated with Orthoptera species richness. Habitat diversity within and adjacent to the grassland patch had by far the highest loadings on the first two axes of the principal component analysis, which jointly explained 99?% of the variance, and proved to be significant for total, threatened and not threatened Orthoptera, as well as for the two Orthoptera orders occurring in Central Europe (Caelifera, Ensifera). Additionally, the distribution of the majority of those 14 Orthoptera species analysed individually was mainly correlated with habitat diversity within and adjacent to the grassland patch. However, the distribution of a significant proportion of species was associated with other factors: five species were closely related to on-site land use diversity and patch size, and the distribution of three Ensifera species was not significantly correlated to any of the explanatory variables. We conclude that a surrogate taxa approach, i.e. the use of well-known taxonomic groups (e.g. vascular plants), may indeed deliver good results for capturing total, but less so for threatened, Orthoptera species richness in semi-natural grassland remnants. Small scale habitat diversity may be crucial to allow for the co-existence of a large number of Orthoptera species and has to be taken equally into account as patch size in nature conservation.  相似文献   

19.
Feral horses (Equus caballus L.) occupy 64 000 ha of montane- subalpine tussock grassland in the south-western Kaimanawa Mountains, an area zoned for military training. Since 1979, the population has increased at 16.7% per annum, reaching 1102 in 1990. The most extensive habitat, red tussock (Chionochloa rubra) grassland, was variably affected by horses; tussocks in restricted mesic sites were heavily grazed and mostly eliminated, but those in extensive xeric grasslands showed little impact. The mixed hard tussock (Festuca novaezelandiae)/red tussock grasslands on basin floors and plateaux, which had already been degraded by early European farming, were suffering further depletion from horse grazing. The restricted, high altitude Chionochloa pallens tussock communities were being eliminated rapidly through preferential grazing. Oligotrophic bogs, on the summits and basin floors were largely intact, whereas high nutrient flushes were severely affected by trampling and grazing. Horses appeared to have had little impact upon Nothofagus forest understoreys. Ten plant species, several of which are vulnerable nationally, occur in the North Island only within the wild horse range. The habitats of five of them were damaged by horses. Throughout the wide basins and plateaux of the north, horses compromised floristic, rare plant habitat, and landscape nature conservation values. Their numbers may therefore have to be controlled.  相似文献   

20.
Metapopulation theory predicts that species richness and total population density of habitat specialists increase with increasing area and regional connectivity of the habitat. To test these predictions, we examined the relative contributions of habitat patch area, connectivity of the regional habitat network and local habitat quality to species richness and total density of butterflies and day-active moths inhabiting semi-natural grasslands. We studied butterflies and moths in 48 replicate landscapes situated in southwest Finland, including a focal patch and the surrounding network of other semi-natural grasslands within a radius of 1.5 km from the focal patch. By applying the method of hierarchical partitioning, which can distinguish between independent and joint contributions of individual explanatory variables, we observed that variables of the local habitat quality (e.g. mean vegetation height and nectar plant abundance) generally showed the highest independent effect on species richness and total density of butterflies and moths. Habitat area did not show a significant independent contribution to species richness and total density of butterflies and moths. The effect of habitat connectivity was observed only for total density of the declining butterflies and moths. These observations indicate that the local habitat quality is of foremost importance in explaining variation in species richness and total density of butterflies and moths. In addition, declining butterflies and moths have larger populations in well-connected networks of semi-natural grasslands. Our results suggest that, while it is crucial to maintain high-quality habitats by management, with limited resources it would be appropriate to concentrate grassland management and restoration to areas with well-connected grassland networks in which the declining species currently have their strongest populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号