首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
S. Hasezawa  T. Nagata 《Protoplasma》1993,176(1-2):64-74
Summary A 49 kDa protein in tobacco BY-2 cells has been found to be cross-reactive with antibodies raised against a 51 kDa protein that was isolated from sea urchin centrosomes and identified as a microtubule-organizing center (MTOC) in animal cells. Tracing the fate of the 49 kDa protein during progression of the cell cycle in highly synchronized tobacco BY-2 cells revealed that this protein was colocalized with plant microtubules (MTs): the location of the 49 kDa protein coincided with preprophase bands (PPBs), mitotic spindles and phragmoplasts. Furthermore, between the M and G1 phases, the 49 kDa protein was observed in the perinuclear regions, in which the initials of MTs are organizing to form cortical MTs. At the G1 phase the location of the 49 kDa protein in the cell cortex coincided with that of the cortical MTs. It appeared that the 49 kDa protein in the cell cortex was transported as granules from the perinuclear regions. Thus, it is highly probable that the 49 kDa protein, which reacts with antibodies against the 51 kDa protein in sea urchin centrosomes, plays the role of an MTOC in plant cells. Thus, the mechanisms for organizing MTs in higher organisms appear to share a common protein, even though the organization of MTs is superficially very different in plant and animal cells.Abbreviations DAPI 4,6-diamidino-2-phenyl indole - MT microtubule - MTOC microtubule-organizing center - PAGE polyacrylamide gel electrophoresis - PBS phosphate-buffered saline - PPB preprophase band - SDS sodium dodecylsulfate  相似文献   

2.
Microtubules and the organization of the Golgi complex   总被引:42,自引:0,他引:42  
Electron microscopic and cytochemical studies indicate that microtubules play an important role in the organization of the Golgi complex in mammalian cells. During interphase microtubules form a radiating pattern in the cytoplasm, originating from the pericentriolar region (microtubule-organizing centre). The stacks of Golgi cisternae and the associated secretory vesicles and lysosomes are arranged in a circumscribed juxtanuclear area, usually centered around the centrioles, and show a defined orientation in relation to the rough endoplasmic reticulum. Exposure of cells to drugs such as colchicine, vinblastine and nocodazole leads to disassembly of microtubules and disorganization of the Golgi complex, most typically a dispersion of its stacks of cisternae throughout the cytoplasm. These alterations are accompanied by disturbances in the intracellular transport, processing and release of secretory products as well as inhibition of endocytosis. The observations suggest that microtubules are partly responsible for the maintenance and functioning of the Golgi complex, possibly by arranging its stacks of cisternae three-dimensionally within the cell and in relation to other organelles and ensuring a normal flow of material into and away from them. During mitosis, microtubules disassemble (prophase) and a mitotic spindle is built up (metaphase) to take care of the subsequent separation of the chromosomes (anaphase). The breaking up of the microtubular cytoskeleton is followed by vesiculation of the rough endoplasmic reticulum and partial atrophy, as well as dispersion of the stacks of Golgi cisternae. After completion of the nuclear division (telophase), the radiating microtubule pattern is re-established and the rough endoplasmic reticulum and the Golgi complex resume their normal interphase structure. This sequence of events is believed to fulfil the double function to provide tubulin units and space for construction of the mitotic spindle and to guarantee an approximately equal distribution of the rough endoplasmic reticulum and the Golgi complex on the two daughter cells.  相似文献   

3.
Pavla Binarova  P. Rennie  L. Fowke 《Protoplasma》1994,180(3-4):106-117
Summary The localization in higher plant cells of phosphorylated proteins recognized by the monoclonal antibody MPM-2 was investigated, with particular attention to putative microtubule organizing centres (MTOCs). Immunofluorescence and immunogold electron microscopy showed that MPM-2 did not localize with most putative MTOCs in cells and protoplasts of the gymnospermPicea glauca and in cells of the angiospermVicia faba. The distribution of phosphoproteins detected by MPM-2 was similar during mitosis in both species. At late interphase and early prophase MPM-2 preferentially labelled nucleoli and the region around the condensing chromosomes but not the cytoplasm. General labelling of the cytoplasm followed dissolution of the nuclear envelope and by prometaphase centromeres stained strongly. At metaphase and very early anaphase kinetochores stained strongly by immunofluorescence but only weakly using immunogold; spindle microtubules (MTs) showed little staining. Kinetochore staining disappeared during anaphase and by telophase centromeres and loose regions of chromatin in reforming nuclei were labelled. Treatment with the anti-microtubular drug amiprophosmethyl (APM) showed that the phosphorylation/dephosphorylation cycle detected by MPM-2 proceeded independently of the mitotic spindle. Staining of centromeres/kinetochores with MPM-2 suggests that phosphorylation and dephosphorylation of this region of mitotic chromosomes may be involved in chromosome organization, chromatid separation and MT nucleation and/or attachment.Abbreviations APM amiprophos-methyl - DAPI 4,6-diamidino-2-phenylindole - EGTA ethylene glycol-bis(-aminoethyl ether) - FITC fluorescein isothiocyanate - MT microtubule - MTOC microtubule organizing centre - MtSB microtubule stabilizing buffer - PBS phosphate buffered saline - PBSB phosphate buffered saline with bovine serum albumin - PIPES piperazine-N,N-bis (2-ethanesulfonic acid) - PPB preprophase band - SPB spindle pole body - TRITC tetramethylrhodamine isothiocyanate  相似文献   

4.
The plant volatile monoterpene citral is a highly active compound with suggested allelopathic traits. Seed germination and seedling development are inhibited in the presence of citral, and it disrupts microtubules in both plant and animal cells in interphase. We addressed the following additional questions: can citral interfere with cell division; what is the relative effect of citral on mitotic microtubules compared to interphase cortical microtubules; what is its effect on newly formed cell plates; and how does it affect the association of microtubules with γ‐tubulin? In wheat seedlings, citral led to inhibition of root elongation, curvature of newly formed cell walls and deformation of microtubule arrays. Citral’s effect on microtubules was both dose‐ and time‐dependent, with mitotic microtubules appearing to be more sensitive to citral than cortical microtubules. Association of γ‐tubulin with microtubules was more sensitive to citral than were the microtubules themselves. To reveal the role of disrupted mitotic microtubules in dictating aberrations in cell plates in the presence of citral, we used tobacco BY2 cells expressing GFP‐Tua6. Citral disrupted mitotic microtubules, inhibited the cell cycle and increased the frequency of asymmetric cell plates in these cells. The time scale of citral’s effect in BY2 cells suggested a direct influence on cell plates during their formation. Taken together, we suggest that at lower concentrations, citral interferes with cell division by disrupting mitotic microtubules and cell plates, and at higher concentrations it inhibits cell elongation by disrupting cortical microtubules.  相似文献   

5.
Summary The organization of the microtubule cytoskeleton in the generative cell ofConvallaria majalis has been studied during migration of the cell through the pollen tube and its division into the two sperm cells. Analysis by conventional or confocal laser scanning microscopy after tubulin staining was used to investigate changes of the microtubule cytoskeleton during generative-cell migration and division in the pollen tube. Staining of DNA with 4,6-diamidino-2-phenylindole was used to correlate the rearrangement of microtubules with nuclear division during sperm cell formation. Before pollen germination the generative cell is spindle-shaped, with microtubules organized in bundles and distributed in the cell cortex to form a basketlike structure beneath the generative-cell plasma membrane. During generative-cell migration through the pollen tube, the organization of the microtubule bundles changes following nuclear division. A typical metaphase plate is not usually formed. The generative-cell division is characterized by the extension of microtubules concomitant with a significant cell elongation. After karyokinesis, microtubule bundles reorganize to form a phragmoplast between the two sperm nuclei. The microtubule organization during generative-cell division inConvallaria majalis shows some similarities but also differences to that in other members of the Liliaceae.Abbreviations CLSM confocal laser scanning microscopy - EM electron microscopy - GC generative cell - GN generative nucleus - MT microtubule - SC sperm cell - SN sperm nucleus - VN vegetative nucleus  相似文献   

6.
The cell cycle of the marine centric diatom Stephanopyxis turris consists of a series of spatially and temporally well-ordered events. We have used immunofluorescence microscopy to examine the role of cytoplasmic microtubules in these events. At interphase, microtubules radiate out from the microtubule-organizing center, forming a network around the nucleus and extending much of the length and breadth of the cell. As the cell enters mitosis, this network breaks down and a highly ordered mitotic spindle is formed. Peripheral microtubule bundles radiate out from each spindle pole and swing out and away from the central spindle during anaphase. Treatment of synchronized cells with 2.5 X 10(-8) M Nocodazole reversibly inhibited nuclear migration concurrent with the disappearance of the extensive cytoplasmic microtubule arrays associated with migrating nuclei. Microtubule arrays and mitotic spindles that reformed after the drug was washed out appeared normal. In contrast, cells treated with 5.0 X 10(-8) M Nocodazole were not able to complete nuclear migration after the drug was washed out and the mitotic spindles that formed were multipolar. Normal and multipolar spindles that were displaced toward one end of the cell by the drug treatment had no effect on the plane of division during cytokinesis. The cleavage furrow always bisected the cell regardless of the position of the mitotic spindle, resulting in binucleate/anucleate daughter cells. This suggests that in S. turris, unlike animal cells, the location of the plane of division is cortically determined before mitosis.  相似文献   

7.
Summary Treatment of young thalli ofSphacelaria rigidula with 0.04 g of nocodazole (Nz) per ml for up to 36 h affects microtubules (Mts) only slightly, but blocks a large number of mitotic cells in metaphase, without disruption of the metaphase plate. Higher concentrations of Nz (0.1 g/ml) depolymerize interphase Mts. Only a few perinuclear and some short Mts resist and remain associated with the centrosomes. Fragmented Mts or groups of Mts sometimes remain in the apical dome. After treatment with 0.1 g of Nz per ml, prometaphase cells are blocked at metaphase, while post-metaphase cells become binuclear, due to the failure of cytokinesis. With anticentrin immunofluorescence, a positive centrin signal is always observed in the centrosome area. Centrosome duplication is not affected by Nz, but separation is disturbed. After recovering for 2–4 h, most of the blocked metaphases proceed normally. In such cells duplicated centrosomes are seen in different stages of separation. In some cells independent aster-like microtubule configurations appear in the apical dome, occasionally displaying centrin at their centre. During recovery various configurations of bimitosis or multipolar mitosis were found. The multipolar spindles may share common centrosomes. Up to four centrosomes may accompany each nucleus. In some 24 h treated cells, as well as in cells recovering for 2 h, the centrin-positive structure is rod-like, extending in opposite directions from the usual position to the poles. Electron microscopical examination of thin sections revealed that the growth pattern of the apical cells is disrupted after Nz treatment. The observations show that: (a) the Mt cytoskeleton is involved in maintaining the polarity and growth pattern of apical cells, (b) mitosis is blocked by low concentrations of Nz without significant depolymerization of Mts, (c) the centrosome cycle is independent of the nuclear cycle, (d) centrosome separation and differentiation are disturbed by Nz treatment, (e) during recovery from Nz treatment, centrosomal material that may have separated from the centrosomes, as well as Mt fragments that resisted depolymerization, may operate as Mt nucleation centres.Abbreviations DIC differential interference contrast - EM electron microscope - Mt microtubule - MTOC microtubule-organizing center - Nz nocodazole - NBBC nucleus-basal body connector  相似文献   

8.
Summary This work examines mitosis in root-tip cells ofTriticum turgidum treated with the RNA synthesis inhibitor ethidium bromide, using tubulin immunolabeling and electron microscopy. The following aberrations were observed in ethidium bromideaffected cells: (1) incomplete chromatin condensation and nuclear-envelope breakdown; (2) delay of preprophase microtubule band maturation; (3) preprophase microtubule band assembly in cells displaying an interphase appearance of the nucleus; (4) prevention of the prophase spindle formation, caused by inhibition of perinuclear microtubule (Mt) formation and/or inability of the perinuclear Mts to assume bipolarity; (5) organization of an atypical metaphase spindle which is unable to arrange the chromosomes on the equatorial plane; (6) formation of an atypical perinuclear metaphase spindle in cells in which nuclear-envelope breakdown has been almost completely inhibited; (7) inhibition of the anaphase spindle formation as well as of anaphase chromosome movement; (8) disorganization of the atypical mitotic spindle during transition from mitosis to cytokinesis. The observations favor the following hypotheses. Nucleation of prophase spindle Mts is related to the mechanism that causes nuclear-envelope breakdown. The mitotic poles lack Mtnucleating and -organizing properties, and their function does not account for prophase and metaphase spindle assembly. The organization of the prophase spindle is not a prerequisite for the formation of the metaphase spindle; the metaphase spindle seems to be formed de novo by Mts nucleated on the nuclear envelope and/or in the immediate vicinity of chromosomes.Abbreviations 5-AU 5-aminouracil - EB ethidium bromide - EM electron microscopy - k-Mt kinetochore microtubule - Mt microtubule - MTOC microtubule-organizing center - NE nuclear envelope - NEB nuclear-envelope breakdown - PPB preprophase band of microtubules  相似文献   

9.
Summary Aspects of morphogenesis and morphology of diatom cell walls are reviewed to highlight functional correlations between wall structures and three-dimensional cytoplasmic activities during the cell cycle. Morphogenesis of the siliceous valve within the silica deposition vesicle is discussed in the light of the dependency on a precisely orchestrated moulding machinery, involving the cytoskeleton, mitochondria, endoplasmic reticulum, spacer vesicles produced by the Golgi apparatus, and the plasmalemma, in combination with adhesion of the cells to parts of the parental wall and localized plasmolyses. Sensitivity of morphogenetic events to fluctuations of external factors has implications for taxonomy.Abbreviations CF cleavage furrows - cPL cleavage plasmalemma - GB girdle bands - LP labiate process - LPA labiate process apparatus - MC microtubule center - mLP macro labiate process - MT microtubule - MTOC microtubules organizing center - PL plasmalemma - SDV silica deposition vesicle - SL SDV membrane - SpV spacer vesicles Dedicated to Professor Peter Sitte on the occasion of his 65th birthday  相似文献   

10.
Summary The tubulin cytoskeleton in hyphal tip cells ofAllomyces macrogynus was detected with an -tubulin monoclonal antibody and analyzed with microscopic and immunoblot techniques. The -tubulin antibody identified a 52 kilodalton polypeptide band on immunoblots. Immunfluorescence data were collected from formaldehyde-and cryofixed hyphae. Both methods provided similar images of tubulin localization. However, cryofixation yielded more consistent labeling and did not require detergent extraction or cell-wall lytic treatments. Tubulin was primarily localized as microtubules observed in the peripheral and central cytoplasmic regions and in mitotic spindles. Cytoplasmic microtubules were oriented parallel to the cells' longitudinal axis, with central microtubules more often varied in their alignment, and emanated from a region in the hyphal apex resulting in an apical zone of bright fluorescence. A thin layer of microtubules appearing as bands of fluorescence encircled many nuclei. Discrete spots of fluorescence were also associated with nuclei. The MPM-2 antibody, which recognizes phosphorylated epitopes of several proteins that may be involved in the regulation of microtubule nucleation, stained centrosomes but not apical regions of hyphae. Nocodazole was used to depolymerize the microtubule network and reveal its regions of origin. A hocodazole concentration of 0.01 g/ ml (3.3× 10–8M) provided a 70 to 75% inhibition of hyphal tip growth and was used throughout this study. The number of cells having an apical zone of fluorescence declined by 15 min of exposure. This zone was present in only a few cells after 60 min. After 30 min, the central cytoplasm consisted of small microtubule fragments and nuclear-associated spots. A small number of peripheral microtubules and nuclear-associated spots persisted throughout nocodazole treatments. Spindle microtubules were restored by 30 min after removal of nocodazole. This was followed by the reappearance of the apical zone of fluorescence and then by central and peripheral cytoplasmic microtubules. Apical fluorescence coincided with the presence of a Spitzenkörper. The results suggest that the Spitzenkörper and centrosome function as centers of microtubule nucleation and organization during hyphal tip growth in this fungus.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamidino-2-phenylindole - DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - IB incubation buffer - LN2 liquid nitrogen - LSCM laser scanning confocal microscopy - MTOCs microtubule-organizing centers - PBS phosphate buffered saline - PIPES 1,4-piperazinedietha-nesulfonic acid - PFB PIPES fixation buffer - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - SPB spindle pole body - TEM transmission electron microscopy - YpSs yeast extract-inorganic phosphate-soluble starch  相似文献   

11.
Eleftheriou  E.P.  Bekiari  E. 《Plant and Soil》2000,226(1):11-19
The present ultrastructural investigation on the effects of 50 M chlorpropham (previously called CIPC) on growing roots of wheat (Triticum aestivum (L.) Thell cv. Vergina) was undertaken to clarify the mechanism of a carbamate herbicide action in plant cells, since the wide range of responses of plant cells to carbamate herbicides is based mainly on immunofluorescence studies. Cells of control roots contained abundant microtubules both in interphase and mitotic arrays. In chlorpropham-treated roots, however, no microtubules could be detected at all, neither in dividing nor in differentiating cells. Cycling cells became binucleate, polyploid or contained incomplete cell walls, the result of inhibition of cytokinesis. In long-term drug treatments (24 h or more) the affected cells entered a new cycle, which, however, did not progress beyond mid-metaphase. The nuclei of binucleate cells initiated prophase synchronously. Small vacuoles and Golgi vesicles were trapped within the nucleoplasm of the multilobed nuclei. In roots recovering from 8 h chlorpropham treatment, cells continued to exhibit polyploid nuclei, intranuclear vacuoles and incomplete walls. Microtubules reappeared but they were sparse and lacked a definite orientation. Preprophase cells did not form normal preprophase bands of microtubules, while mitotic cells occasionally contained microtubules bound to chromosomes and converged to minipoles. It is concluded that chlorpropham disorganized directly microtubules in addition to irreversibly affecting microtubule organizing centres, which failed to further support microtubule arrays.  相似文献   

12.
We have studied the response of the interphase and mitotis microtubule arrays in root meristem cells of spring and winter cultivars of wheat Triticum aestivum L. (Moskovskaya 35 and Moskovskaya 39) during cold stress (1 h at 0 degrees C) and acclimation to cold (3-48 h at 0 degrees C). Our data show that interphase microtubules are more resistant to cold than mitotic arrays in both cultivars. During cold stress the density of endoplasmic microtubules increases in interphase cells of winter plants, yet no changes are detected in cells of spring plants. In mitotic cells of both wheat cultivars the density of microtubules within the kinetochore fibers decreases, yet this effect is more evident in the cells of spring plants. During acclimation to cold of both cultivars, we have observed the disorganization of the interphase cortical arrays and the enhanced growth of endoplasmic microtubule arrays, composed of microtubule converging centers. However, the reaction of mitotic microtubule arrays differs in the cells of winter and spring plants. In winter plants, during prophase diffuse tubulin "halo" accumulates first at perinuclear area, followed by the appearance of the microtubule converging centers. In spring plants, we have observed the formation of the prophase spindle, yet later the prophase spindle is not detected. Metaphase cells of both cultivars show similar aberrations of the mitotic spindle, accumulation of abnormal metaphases and the excessive formation of microtubule converging centers. In telophase cells of both cultivars, acclimation induces similar reaction, resulting in the disorganization of the phragmoplast and the formation of multiple microtubule converging centers. The latter are detected in the perinuclear areas of the daughter cells in winter plants and in the cortical cytoplasm of cells in spring plants. Our data point to the common pathways of microtubule response to cold treatment (0 degrees C). The excessive formation of the microtubule converging centers indicates the activation of microtubule assembly during prolonged cold treatment.  相似文献   

13.
Horio T  Oakley BR 《Plant physiology》2003,133(4):1926-1934
gamma-Tubulin localizes to microtubule-organizing centers in animal and fungal cells where it is important for microtubule nucleation. Plant cells do not have morphologically defined microtubule organizing centers, however, and gamma-tubulin is distributed in small, discrete structures along microtubules. The great difference in distribution has prompted speculation that plant gamma-tubulins function differently from animal and fungal gamma-tubulins. We tested this possibility by expressing Arabidopsis gamma-tubulin in the fission yeast Schizosaccharomyces pombe. At high temperatures, the plant gamma-tubulin was able to bind to microtubule-organizing centers, nucleate microtubule assembly, and support the growth and replication of S. pombe cells lacking endogenous gamma-tubulin. However, the distribution of microtubules was abnormal as was cell morphology, and at low temperatures, cells were arrested in mitosis. These results reveal that Arabidopsis gamma-tubulin can carry out essential functions in S. pombe and is, thus, functionally conserved. The morphological abnormalities reveal that it cannot carry out some nonessential functions, however, and they underscore the importance of gamma-tubulin in morphogenesis of fission yeast cells and in maintaining normal interphase microtubule arrays.  相似文献   

14.
Hensel W 《Protoplasma》1984,119(1-2):121-134
Summary Statocytes in root caps ofLepidium sativum L. were examined by means of ultrathin serial sections to evaluate the amount and distribution of cortical microtubules. The microtubules encircle the cell, oriented normal to the root length axis. In the distal cell edges, microtubules form a network, separating the distal complex of endoplasmic reticulum from the plasmalemma. Preprophase bands in meristem cells are observable rarely, structures which can be regarded as nucleating sites for microtubules are lacking. During ageing of the root cap cells, the number of microtubules increases in combination with a decrease of microtubule length. Development of the roots on a horizontal clinostat preserves a younger developmental stage of the microtubule system regarding amount and length of the individual microtubules. Evidence for an involvement of microtubules in graviperception is low, whereas their role in orienting cellulose microfibrils cannot be ruled out. Compression of the distal network of microtubules after centrifugation of the roots indicates that microtubules in statocytes ofLepidium sativum L. roots might function in stabilizing the distal complex of endoplasmic reticulum.  相似文献   

15.
Preuss ML  Delmer DP  Liu B 《Plant physiology》2003,132(1):154-160
Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted with interphase microtubules. In cotton (Gossypium hirsutum) fibers, cortical microtubules undergo dramatic reorganization during fiber development. In this study, cDNA clones of the cotton KCBP homolog GhKCBP were isolated from a cotton fiber-specific cDNA library. During cotton fiber development from 10 to 21 DPA, the GhKCBP protein level gradually decreases. By immunofluorescence, GhKCBP was detected as puncta along cortical microtubules in fiber cells of different developmental stages. Thus our results provide evidence that GhKCBP plays a role in interphase cell growth likely by interacting with cortical microtubules. In contrast to fibers, in dividing cells of cotton, GhKCBP localized to the nucleus, the microtubule preprophase band, mitotic spindle, and the phragmoplast. Therefore KCBP likely exerts multiple roles in cell division and cell growth in flowering plants.  相似文献   

16.
Despite the absence of a conspicuous microtubule-organizing centre, microtubules in plant cells at interphase are present in the cell cortex as a well oriented array. A recent report suggests that microtubule nucleation sites for the array are capable of associating with and dissociating from the cortex. Here, we show that nucleation requires extant cortical microtubules, onto which cytosolic gamma-tubulin is recruited. In both living cells and the cell-free system, microtubules are nucleated as branches on the extant cortical microtubules. The branch points contain gamma-tubulin, which is abundant in the cytoplasm, and microtubule nucleation in the cell-free system is prevented by inhibiting gamma-tubulin function with a specific antibody. When isolated plasma membrane with microtubules is exposed to purified neuro-tubulin, no microtubules are nucleated. However, when the membrane is exposed to a cytosolic extract, gamma-tubulin binds microtubules on the membrane, and after a subsequent incubation in neuro-tubulin, microtubules are nucleated on the pre-existing microtubules. We propose that a cytoplasmic gamma-tubulin complex shuttles between the cytoplasm and the side of a cortical microtubule, and has nucleation activity only when bound to the microtubule.  相似文献   

17.
Summary Although there are numerous herbicides that disrupt mitosis as a mechanism of action, to date not one has compared the effects of these disrupters on a single species and over a range of concentrations. Oat seedlings, treated with a range of concentrations of nine different mitotic disrupter herbicides, were examined by immunofluorescence microscopy of tubulin in methacrylate sections. All herbicides caused the same kinds of microtubule disruption, although the concentrations required to cause the effects differed markedly between the herbicides. Effects on spindle and phragmoplast mitotic microtubule arrays were seen at the lowest concentrations and manifested as multipolar spindles and bifurcated phragmoplasts (which subsequently resulted in abnormal cell plate formation). At increasing concentrations, effects on mitotic microtubule arrays manifested as microtubule tufts at kinetochores and reduction of cortical microtubules resulting in arrested prometaphase figures and isodiametric cells. These data indicate that all mitotic disrupter herbicides have a common primary mechanism of action, inhibition of microtubule polymerization, and that marginal effects observed in the past were the result of incomplete inhibition and/or differential sensitivity of the microtubule arrays.Abbreviations DCPA 2,3,5,6-tetrachloroterephthalic acid dimethyl ester - APM amiprophosmethyl - DAPI 4,6-diamidino-2-phenyl indole - MTOC microtubule organizing center  相似文献   

18.
Summary Cortical microtubules in the epidermis of regeneratingGraptopetalum plants were examined by in situ immunofluorescence. Paradermal slices of tissue were prepared by a method that preserves microtubule arrays and also maintains cell junctions. To test the hypothesis that cortical microtubule arrays align perpendicular to the direction of organ growth, arrays were visualized and their orientation quantified. A majority of microtubules are in transverse orientation with respect to the organ axis early in shoot development when the growth habit is uniform. Later in development, when growth habit is non-uniform and the tissue is contoured, cortical microtubules are increasingly longitudinal and oblique in orientation. Microtubules show only a minor change in orientation at the site of greatest curvature, the transition zone of a developing leaf. To assess the role of the division plane on orientation of arrays, the pattern of microtubules was examined in individual cells of common shape. Cells derived from transverse divisions have predominately transverse cortical arrays, whereas cells derived from oblique and longitudinal divisions have non-transverse arrays. The results show that, regardless of the stage of development, microtubules orient with respect to cell shape and plane of division. The results suggest that cytoskeletal function is best considered in small domains of growth within an organ.Abbrevations DMSO dimethylsulfoxide - EGTA ethylene glycol-bis-(ß-aminoethyl ether)-N, N, N, N-tetra acetic acid - FITC fluorescein isothiocyanate - MTSB microtubule stabilizing buffer - PBS phosphate buffered saline  相似文献   

19.
Collings DA  Harper JD  Vaughn KC 《Planta》2003,218(2):204-216
We have investigated changes in the distribution of peroxisomes through the cell cycle in onion (Allium cepa L.) root meristem cells with immunofluorescence and electron microscopy, and in leek (Allium porrum L.) epidermal cells with immunofluorescence and peroxisomal-targeted green fluorescent protein. During interphase and mitosis, peroxisomes distribute randomly throughout the cytoplasm, but beginning late in anaphase, they accumulate at the division plane. Initially, peroxisomes occur within the microtubule phragmoplast in two zones on either side of the developing cell plate. However, as the phragmoplast expands outwards to form an annulus, peroxisomes redistribute into a ring immediately inside the location of the microtubules. Peroxisome aggregation depends on actin microfilaments and myosin. Peroxisomes first accumulate in the division plane prior to the formation of the microtubule phragmoplast, and throughout cytokinesis, always co-localise with microfilaments. Microfilament-disrupting drugs (cytochalasin and latrunculin), and a putative inhibitor of myosin (2,3-butanedione monoxime), inhibit aggregation. We propose that aggregated peroxisomes function in the formation of the cell plate, either by regulating hydrogen peroxide production within the developing cell plate, or by their involvement in recycling of excess membranes from secretory vesicles via the -oxidation pathway. Differences in aggregation, a phenomenon which occurs in onion, some other monocots and to a lesser extent in tobacco BY-2 suspension cells, but which is not obvious in the roots of Arabidopsis thaliana (L.) Heynh., may reflect differences within the primary cell walls of these plants.Abbreviations BDM 2,3-butanedione monoxime - DAPI 4,6-diamidino-2-phenylindole - ER endoplasmic reticulum - GFP green fluorescent protein  相似文献   

20.
Immunofuorescence staining with antibodies to tubulin and vimentin and staining with phalloidin have been used to examine the effects of methylmercury on the cytoskeleton of embryonal carcinoma cells in culture. Exposure of embryonal carcinoma cells to methylmercury (0.01 to 10 m) resulted in concentration- and time-dependent disassembly of microtubules in interphase and mitotic cells. These effects were reversible when cultures were washed free of methylmercury. Spindle microtubules were more sensitive than those of interphase cells. Spindle damage resulted in an accumulation of cells in prometaphase/metaphase, which; correlated with a temporary delay in the resumption of normal proliferation rate upon removal of methylmercury. Of the interphase cytoskeletal components, microtubules were the first affected by methylmercury. Vimentin intermediate filaments appeared relatively insensitive to methylmercury, but showed a reorganization secondary to the microtubule disassembly. Actin microfilaments appeared unchanged in cells showing complete absence of microtubules. Our results 1) support previous reports suggesting that microtubules are a primary target of methylmercury, 2) document a differential sensitivity of mitotic and interphase microtubule systems and 3) demonstrate the relative insensitivities of other cytoskeletal components.Abbreviations -MEM alpha minimal essential medium - EC embryonal carcinoma cells - McHg methylmercury - PBS phosphate buffered saline - SB microtubule stabilizing buffer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号