首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
杨赞  梁艺璇  张军  何增国 《微生物学报》2022,62(9):3289-3305
羊毛硫肽(lanthipeptide)是一类由核糖体合成并经翻译后修饰的含羊毛硫氨酸或β-甲基羊毛硫氨酸的多肽。近年来,放线菌来源的羊毛硫肽因其突出的抗菌活性和罕见的生物活性而备受关注。本文重点对放线菌来源的不同类型的羊毛硫肽的结构特征及其特性进行了综述,讨论了生物或化学方法修饰天然羊毛硫肽和基因组挖掘发现结构新颖的羊毛硫肽在开发符合实际应用需求的放线菌来源的羊毛硫肽中的应用,并对放线菌来源的羊毛硫肽的应用潜力进行了总结和展望。  相似文献   

2.
羊毛硫肽(lanthipeptide)是由核糖体合成并经翻译后修饰产生的肽类天然产物,具有丰富的分子结构和多样的生物活性。新型羊毛硫肽是活性药物的重要来源,可以通过基因组挖掘和工程改造获得。羊毛硫肽前体肽由基因编码,同时其合成酶具有较高的底物杂泛性。基于这些特征,可以对羊毛硫肽的生物合成过程开展高通量工程改造,从而快速获得新的羊毛硫肽衍生物。综述了近些年高通量构建和筛选羊毛硫肽衍生物的新方法:介绍了非天然氨基酸引入、组合式生物合成、嵌合前导肽等文库构建技术;讨论了细胞表面展示、反向双杂交、细胞自裂解、无细胞(cell-free)体系等方法在结构与活性筛选中的应用;对基于自动化合成生物技术开展羊毛硫肽的规模化工程改造进行了展望。  相似文献   

3.
羊毛硫肽类化合物(Lanthipeptide)生物合成新进展   总被引:1,自引:0,他引:1  
羊毛硫肽化合物(Lanthipeptides)是由核糖体合成并经过翻译后修饰得到的一大类肽类天然产物。这类化合物广泛的产生于不同种类的细菌,具有丰富的结构和生物活性多样性,为活性药物研究和开发提供重要的来源。本文综述了近几年来羊毛硫肽化合物生物合成进展,从其合成酶结构,进化机制,区域和立体选择性控制等方面进行了简要的讨论,展示了羊毛硫肽类化合物生物合成中特殊而迷人的酶学机制。  相似文献   

4.
张铮  张丽  张杰  马宏初  孙树涛  钟瑾 《微生物学报》2015,55(11):1402-1408
摘要:【目的】利用半体外生物合成方法获得棒状链霉菌中的隐性羊毛硫肽,为放线菌中羊毛硫肽资源的挖掘提供借鉴。【方法】利用nisin修饰系统,在大肠杆菌(Escherichia coli)中对隐性羊毛硫肽的核心肽进行体内修饰。修饰后产物经亲和层析和高效液相色谱(HPLC)纯化后,体外酶切反应切除前导肽,利用MALDITOFMS检测核心肽的脱水情况,并结合二级质谱解析其成环结构。【结果】获得了新的羊毛硫肽CLA 124,其核心肽脱去了4分子水,并形成2个硫醚键和一个二硫键。【结论】半体外生物合成方法可用于放线菌来源隐性羊毛硫肽的资源挖掘。  相似文献   

5.
克隆解淀粉芽胞杆菌WS-8 (Bacillus amyloliquefaciens WS-8)中的第二类羊毛硫肽合成酶LanM基因,并对LanM编码蛋白的理化性质及结构特征进行分析。设计LanM基因(登录号:APQ49580.1)扩增引物,提取解淀粉芽胞杆菌WS-8基因组DNA,以其作为模板进行PCR扩增。综合多种软件预测和分析LanM编码蛋白的理化性质、结构域和二级结构等。采用邻位连接法(Neighbor-Joining, NJ)构建系统发育树来分析LanM所编码蛋白与同源蛋白的亲缘关系,以及各蛋白结构域的亲缘关系。PCR扩增出的目的条带约为2 840 bp,通过测序鉴定,序列信息与基因组数据一致。LanM基因编码961个氨基酸,等电点为6.07,相对分子质量为111.485 1 kD。LanM编码的蛋白属于亲水性蛋白,无信号肽。该蛋白含有LANC_like结构域,其二级结构主要由螺旋结构和环状结构组成。系统发育树的分析结果表明LANC_like结构域和LanM同源蛋白的亲缘关系一致。解淀粉芽胞杆菌WS-8中存在第二类羊毛硫肽合成酶LanM基因。揭示了羊毛硫肽合成酶LanM发挥脱水和环化作用的理化性质和结构基础,以期为进一步阐明羊毛硫肽合成酶的生物学功能提供参考。  相似文献   

6.
羊毛硫细菌素是由细菌核糖体上合成并经翻译后加工修饰而成的一类抗菌肽。已经在多种G+细菌中发现有羊毛硫细菌素,大多对G+细菌有抑菌作用。羊毛硫细菌素的基因工程无法从单一的表达羊毛硫细菌素结构基因获得高活性的成熟羊毛硫细菌素。本研究综述了羊毛硫细菌素前体分子定向位点突变后,由修饰酶重新识别和修饰可产生结构变异的可分泌的变体分子和无法分泌的变体分子,对羊毛硫细菌素分子突变位点进行了分类和归纳,并总结了羊毛硫细菌素分子突变位点与其生物活性的关系。在现有羊毛硫细菌素应用成果有限的条件下,对于工程改造羊毛硫细菌素和增强其抑菌活性具有重要意义。  相似文献   

7.
钱润泽  罗云孜 《微生物学报》2022,62(10):3899-3912
【目的】Ⅰ型羊毛硫肽通常具有广泛的生物活性,且抑菌机制独特,较少产生耐药性,因而在临床上具有很好的应用前景。本文对Streptomyces coelicolor A3(2)基因组上2个新颖的Ⅰ型羊毛硫肽生物合成基因簇进行研究,以实现目标羊毛硫肽的表达。【方法】首先,通过antiSMASH分析S. coelicolor A3(2)基因组序列,挖掘羊毛硫肽生物合成基因簇,使用BLAST进行基因功能注释,选择可能参与生物合成过程的基因;然后利用基因组装技术构建异源表达质粒,通过接合转移在链霉菌底盘细胞中进行异源表达;最后对发酵产物进行高效液相色谱、质谱及生物活性检测。【结果】通过添加启动子元件重构S. coelicolor A3(2)上基因簇3 (8.9 kb)和基因簇24 (9.0 kb),得到pYES-ColE1-SCO-cluster3和pYES-ColE1-SCO-cluster24。pYES-ColE1-SCO-cluster3在底盘细胞Streptomyces coelicolor M1152和Streptomycessp. A14中成功表达,得到潜在目标化合物coelin 3;pYES-ColE1-SCO-cluster24在底盘细胞Streptomyces sp. ZM13中成功表达,得到潜在目标化合物coelin 24。其中coelin 3对Bacillus subtilis 168和Escherichia coli ATCC 25922具有抑制作用,并且抑菌圈均达到28 mm。【结论】本研究成功使用启动子激活和异源表达策略实现了coelin 3和coelin 24的表达和活性测试,为后续新颖的羊毛硫肽结构解析和作用机制研究奠定了基础。  相似文献   

8.
防御素基因工程研究进展   总被引:10,自引:0,他引:10  
防御素是一类在生物界广泛存在的、富含半胱氨酸、具有微生物和一些恶性细胞抗性的小分子短肽。它具有抗性谱广,作用机理特殊等优点;因此可以用来研制新型的抗生素类药,并在动植物抗病基域工程上发挥重要作用。概述了防御素在基因工程方面的研究进展,并对其应用前景作了展望。  相似文献   

9.
张彤  张杰  钟瑾 《微生物学通报》2019,46(9):2198-2206
【背景】Ⅱ类羊毛硫细菌素大多是由革兰氏阳性菌的核糖体合成并经过翻译后修饰产生的小肽,其生物合成的最后一步是由转运蛋白LanTN端的肽酶结构域对前导肽进行切割,释放出有活性的羊毛硫细菌素,但目前关于该类羊毛硫细菌素前导肽的切割机制尚不清楚。【目的】考察前导肽切割位点对不同链球菌来源的肽酶结构域BovT150和SboT150酶切活性的影响。【方法】运用不依赖连接酶的定点突变技术构建前导肽切割位点突变的前体蛋白表达载体,在大肠杆菌(Escherichia coli)中分别表达纯化野生型前体(Bov Am和Sbo Am)、突变型前体及对应的切割酶(Bov T150和Sbo T150),构建体外酶切体系,利用HPLC、抑菌活性分析和MALDI-TOF MS检测前导肽的切除情况。【结果】BovT150不仅能够切割Bov Am的GG和GA位点,也能切割Sbo Am的GG和GA位点,并且对切割位点为Gly的前体切割活性较高;Sbo T150仅能切割Sbo Am的GG和GA位点,而对切割位点为Ala的活性较高。【结论】II类羊毛硫细菌素前导肽切割位点氨基酸残基的改变不同程度地影响切割酶的切割效率。  相似文献   

10.
乳链菌肽的特殊结构与功能   总被引:10,自引:0,他引:10  
乳链菌肽的特殊结构与功能庄绪亮马桂荣(山东大学微生物技术国家重点实验室,济南250100)关键词乳链菌肽细菌素羊毛硫氨酸乳链菌肽(nisin)是目前研究最多的一种细菌素,它由某些乳酸链球菌(Streptococ-cuslactis)所产生,含有34个...  相似文献   

11.
Lantibiotics are peptide antibiotics, realizing their unique secondary structure by posttranslational modifications, the most important one being the formation of the characteristic amino acid lanthionine. Like other ribosomal peptide antibiotics, they are synthesized with an N-terminal leader peptide important for posttranslational processing by modifying enzymes; after peptide maturation, the leader peptide is proteolytically cleaved off. Numerous studies of the leader peptides of class I and II lantibiotics already showed their crucial role in recognition, self-immunity, and extracellular transport. The recently described labyrinthopeptins, members of the family of class III lantibiotics, exhibit the characteristic novel amino acid labionin, which was revealed by elucidation of the structure of labyrinthopeptin A2. The assembly of the labionin motif in the linear peptide chain is mediated by the lyase-kinase-cyclase-type enzyme LabKC through a serine side chain phosphorylation with GTP, elimination of the phosphate group, and a subsequent 2-fold Michael-type addition cyclization. In this work, we systematically investigated for the first time the importance of the leader peptide in the processing of class III lantibiotics using the example of the labyrinthopeptin A2 precursor peptide. In vitro studies with synthetic leader peptide analogues revealed that a conserved N-terminal hydrophobic patch on a putative helical structure is required for the proper peptide processing by the modifying enzyme LabKC. On the other hand, studies showed that the C-terminal part of the leader peptide serves as a spacer between the binding site and active sites for phosphorylation and elimination, thus restricting the number of hydroxy amino acid side chains that could undergo dehydration. Finally, a model for the peptide recognition and processing by the LabKC has been postulated.  相似文献   

12.
Lantibiotics are a unique class of peptide antibiotics. Recent studies of the proteins involved in the elaborate post-translational modifications of lantibiotics have revealed that these enzymes have relaxed substrate specificity. These modifications include the dehydration of serine and threonine residues followed by the intramolecular addition of cysteine thiols to the unsaturated amino acids to create an intricate polycyclic peptide. The use of peptide engineering in vivo and in vitro has allowed investigation of their biosynthetic machinery. Several members utilize a unique mode of biological action that involves the sequestration of lipid II, a crucial intermediate in peptidoglycan biosynthesis, to form pores in bacterial membranes.  相似文献   

13.
In the screening programme for new antibiotics an actinomycete culture designated as 3802 was isolated from a soil sample. The culture produced a complex of peptide antibiotics belonging to the group of lantibiotics. The antibiotic complex included gardimycin (actagardin) and new antibiotics of the same group. By the taxonomic properties strain 3802 was classified as Actinoplanes brasiliensis not previously known to produce gardimycin. Conditions of the antibiotic complex biosynthesis by strain 3802, the isolation methods and biological properties were studied.  相似文献   

14.
Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that arise as an alternative to the traditional antibiotics. Lichenicidin is active against clinically relevant bacteria and it was the first lantibiotic to be fully produced in vivo in the Gram-negative host Escherichia coli. Here, we present the results of a library of lichenicidin mutants, in which the mutations were generated based on the extensive bibliographical search available for other lantibiotics. The antibacterial activity of two-peptide lantibiotics, as is lichenicidin, requires the synergistic activity of two peptides. We established a method that allows screening for bioactivity which does not require the purification of the complementary peptide. It is an inexpensive, fast and user-friendly method that can be scaled up to screen large libraries of bioengineered two-peptide lantibiotics. The applied system is reliable and robust because, in general, the results obtained corroborate structure–activity relationship studies carried out for other lantibiotics.  相似文献   

15.
The lantibiotics are a rapidly expanding group of biologically active peptides produced by a variety of Gram-positive bacteria, and are so-called because of their content of the thioether amino acids lanthionine and β-methyllanthionine. These amino acids, and indeed a number of other unusual amino acids found in the lantibiotics, arise following post-translational modification of a ribosomally synthesised precursor peptide. A number of genes involved in the biosynthesis of these highly modified peptides have been identified, including genes encoding the precursor peptide, enzymes responsible for specific amino acid modifications, proteases able to remove the leader peptide, ABC-superfamily transport proteins involved in lantibiotic translocation, regulatory proteins controlling lantibiotic biosynthesis and proteins that protect the producing strain from the action of its own lantibiotic. Analysis of these genes and their products is allowing greater understanding of the complex mechanism(s) of the biosynthesis of these unique peptides.  相似文献   

16.
Strains of Enterococcus faecalis and Lactobacillus sake have been found to express lantibiotics with unusual properties. The enterococcal lantibiotic is unusual in that it consists of two dissimilar subunits, both putatively containing modifications consistent with those found in other lantibiotics. The enterococal lantibiotic is also unusual in the number of proteolytic steps involved in secretion signal removal and activation. Moreover, it has been observed to contribute to enterococcal disease in humans and in animal models. Structrural studies of lactocin S, expressed by a strain of L. sake highlight unique properties including the presence of D-alanine within its structure, and a protease putatively responsible for lactocin S secretion signal peptide removal which, itself, lacks a signal or propeptide sequence. Despite the unusual properties of each of these lantibiotics, the operons encoding each, and accompanying auxiliary functions, are collinear suggeting a common ancestry. The accretion of interdigitating DNA sequences between genes encoded within the lactocin S determinant are unique to that determinant, however, and are of unknown function.  相似文献   

17.
Subtilin and the closely related entianin are class I lantibiotics produced by different subspecies of Bacillus subtilis. Both molecules are ribosomally synthesized peptide antibiotics with unusual ring structures. Subtilin-like lantibiotics develop strong antibiotic activities against various Gram-positive organisms with an efficiency similar to that of nisin from Lactococcus lactis. In contrast to nisin, subtilin-like lantibiotics partially undergo an additional posttranslational modification, where the N-terminal tryptophan residue becomes succinylated, resulting in drastically reduced antibiotic activities. A highly sensitive high-performance liquid chromatography (HPLC)-based quantification method enabled us to determine entianin and succinylated entianin (S-entianin) concentrations in the supernatant during growth. We show that entianin synthesis and the degree of succinylation drastically change with culture conditions. In particular, increasing glucose concentrations resulted in higher entianin amounts and lower proportions of S-entianin in Landy-based media. In contrast, no succinylation was observed in medium A with 10% glucose. Interestingly, glucose retarded the expression of entianin biosynthesis genes. Furthermore, deletion of the transition state regulator AbrB resulted in a 6-fold increased entianin production in medium A with 10% glucose. This shows that entianin biosynthesis in B. subtilis is strongly influenced by glucose, in addition to its regulation by the transition state regulator AbrB. Our results suggest that the mechanism underlying the succinylation of subtilin-like lantibiotics is enzymatically catalyzed and occurs in the extracellular space or at the cellular membrane.  相似文献   

18.
Lantibiotics are antibacterial peptides isolated from bacterial sources that exhibit activity toward Gram-positive organisms and are usually several orders of magnitude more potent than traditional antibiotics such as penicillin. They contain a number of unique structural features including dehydro amino acid and lanthionine (thioether) residues. Introduced following ribosomal translation of the parent peptide, these moieties render conventional methods of peptide analysis ineffective. We report herein a new method using nickel boride (Ni(2)B), in the presence of deuterium gas, to reduce dehydro side chains and reductively desulfurize lanthionine bridges found in lantibiotics. Using this approach, it is possible to identify and distinguish the original locations of dehydro side chains and lanthionine bridges by traditional peptide sequencing (Edman degradation) followed by mass spectrometry. The strategy was initially verified using nisin A, a structurally well characterized lantibiotic, and subsequently extended to the novel two-component lantibiotic, lacticin 3147, produced by Lactococcus lactis subspecies lactis DPC3147. The primary structures of both lacticin 3147 peptides were then fully assigned by use of multidimensional NMR spectroscopy, showing that lacticin 3147 A1 has a specific lanthionine bridging pattern which resembles the globular type-B lantibiotic mersacidin, whereas the A2 peptide is a member of the elongated type-A lantibiotic class. Also obtained by NMR were solution conformations of both lacticin 3147 peptides, indicating that A1 may adopt a conformation similar to that of mersacidin and that the A2 peptide adopts alpha-helical structure. These results are the first of their kind for a synergistic lantibiotic pair (only four such pairs have been reported to date).  相似文献   

19.
Lanthionine-containing peptide antibiotics called lantibiotics are produced by a large number of Gram-positive bacteria. Nukacin ISK-1 produced by Staphylococcus warneri ISK-1 is type-A(II) lantibiotic. Ribosomally synthesized nukacin ISK-1 prepeptide (NukA) consists of an N-terminal leader peptide followed by a C-terminal propeptide moiety that undergoes several post-translational modification events including unusual amino acid formation by the modification enzyme NukM, cleavage of leader peptide and export by the dual functional ABC transporter NukT, finally yielding a biologically active peptide. Unusual amino acids in lantibiotics contribute to biological activity and also structural stability against proteases. Thus, lantibiotic-synthesizing enzymes have a high potentiality for peptide engineering by introduction of unusual amino acids into desired peptides with altering biological and physicochemical properties, e.g., activity and stability, termed lantibiotic engineering. We report the establishment of a heterologous expression of nukacin ISK-1 biosynthetic gene cluster by the nisin-controlled expression system and discuss our recent progress in understanding of the biosynthetic enzymes for nukacin ISK-1 such as localization, molecular interaction in biophysical and biochemical aspects. Substrate specificity of the lantibiotic-synthesizing enzymes was evaluated by complementation of the biosynthetic enzymes (LctM and LctT) of closely related lantibiotic lacticin 481 for nukacin ISK-1 biosynthesis. We further explored a rapid and powerful tool for introduction of unusual amino acids by co-expression of hexa-histidine-tagged NukA and NukM in Escherichia coli.  相似文献   

20.
Gallidermin: a new lanthionine-containing polypeptide antibiotic   总被引:27,自引:0,他引:27  
Gallidermin is a new member of the class of lanthionine-containing peptide antibiotics, which are summarized under the common name lantibiotics. The lantibiotic gallidermin is produced by Staphylococcus gallinarum (F16/P57) Tü3928, and it exhibits activities against the Propionibacteria, involved in acne disease. Gallidermin differs from the recently discovered tetracyclic 21-residue peptide antibiotic epidermin only in a Leu/Ile exchange in position 6. The isolation procedures for gallidermin included adsorption directly from the culture broth, ion-exchange chromatography of the amphiphilic and basic polypeptide followed by desalting, and final purification by reversed-phase HPLC. The structural elucidation of the polypeptide containing four thioether bridges involved mainly a combination of automated gas-phase sequencing, thermospray liquid chromatography/mass spectrometry and fast-atom-bombardment mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号