首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
普遍认为,急性胰腺炎起始于腺泡细胞内的胰蛋白酶原激活,随后引起的炎症反应加剧病情,也是多器官功能衰竭的主要原因。然而,最新的研究表明,急性胰腺炎引起的炎症反应是不依赖于胰蛋白酶原激活的独立病理过程。趋化因子作为能引起细胞趋化的细胞因子,通过与趋化因子受体作用,不但能调控淋巴细胞的生长、成熟和迁移,也参与多种炎症疾病与癌症的病理过程。近年来,多项研究已经阐述趋化因子及趋化因子受体在急性胰腺炎的发病发展过程中起到至关重要的作用。本文总结了CC,CXC和CX3C趋化因子家族成员在参与急性胰腺炎的炎症反应及对胰腺损伤的修复的研究进展,这将为AP临床治疗方案的设计提供新思路。  相似文献   

2.
Defects in podocyte signaling are the basis of many inherited glomerular diseases leading to glomerulosclerosis. CD2-associated protein (CD2AP) is highly expressed in podocytes and is considered to play an important role in the maintenance of the glomerular slit diaphragm. Mice deficient for CD2AP (CD2AP(-/-)) appear normal at birth but develop a rapid onset nephrotic syndrome at 3 weeks of age. We demonstrate that impaired intracellular signaling with subsequent podocyte damage is the reason for this delayed podocyte injury in CD2AP(-/-) mice. We document that CD2AP deficiency in podocytes leads to diminished signal initiation and termination of signaling pathways mediated by receptor tyrosine kinases (RTKs). In addition, we demonstrate that CIN85, a paralog of CD2AP, is involved in termination of RTK signaling in podocytes. CIN85 protein expression is increased in CD2AP(-/-) podocytes in vitro. Stimulation of CD2AP(-/-) podocytes with various growth factors, including insulin-like growth factor 1, vascular endothelial growth factor, and fibroblast growth factor, resulted in a significantly decreased phosphatidylinositol 3-kinase/AKT and ERK signaling response. Moreover, increased CIN85 protein is detectable in podocytes in diseased CD2AP(-/-) mice, leading to decreased base-line activation of ERK and decreased phosphorylation after growth factor stimulation in vivo. Because repression of CIN85 protein leads to a restored RTK signaling response, our results support an important role of CD2AP/CIN85 protein balance in the normal signaling response of podocytes.  相似文献   

3.
4.
5.
Aminopeptidases play important role in the mobilization of storage proteins at the cotyledon during seed germination. It is often referred as inducible component of defense against herbivore attack. However the role of aminopeptidase in response to pathogen attack in germinating seeds is remained to be unknown. An attempt was made to analyze change in the aminopeptidase (EC 3.4.11.1) activity during germination of pigeonpea (Cajanus cajan L.) seeds by infecting the seeds with fungi. Two aminopeptidase activity bands (AP1 and AP2) were detected in control as well as infected pigeonpea seeds. During latter stages of germination in control seeds, AP1 activity was replaced by AP2 activity. However AP1 activity was significantly induced in germinating seeds infected with Fusarium oxysporum f.sp. ciceri and Aspergillus niger var. niger. The estimated molecular weights of AP1 and AP2 were ∼97 and 42.8 kDa respectively. The induced enzyme was purified up to 30 fold by gel filtration chromatography. The purified enzyme was preferentially cleaved leucine p-nitroanilide than alanine p-nitroanilide. The enzyme was strongly inhibited by bestatin and 1,10-phenanthroline. Almost 50% of enzyme activity was inhibited by ethylene diamine tetra acetate. The purified enzyme showed broad pH optima ranging from pH 6.0 to 9.0 and optimum at pH 8.5. The induction of aminopeptidase activity during pigeonpea seed germination and in response to pathogen attack indicates significant involvement of these enzymes in primary as well as secondary metabolism of the seeds. These findings could be helpful to further dissect defensive role of aminopeptidases in seed germination which is an important event in plant's life.  相似文献   

6.
The in vivo activity of the alternative pathway (ν(alt)) has been studied using the oxygen isotope fractionation method in leaves of Arabidopsis thaliana modified for the expression of the AtAOX1a gene by anti-sense (AS-12) or overexpression (XX-2). Under non-stressful conditions, ν(alt) was similar in all plant lines regardless of its different alternative pathway capacities (V(alt)). Total leaf respiration (V(t)) and V(alt) were directly related to growth light conditions while electron partitioning between the cytochrome pathway (CP) and alternative pathway (AP) was unchanged by light levels. Interestingly, the AP functioned at full capacity in anti-sense plants under both growth light conditions. The role of the AP in response to a high light stress induced by short-term high light treatment (HLT) was also studied. In wild type and XX-2, both CP and AP rates increased proportionally after HLT while in AS-12, where the AP was unable to increase its rate, the CP accommodated all the increase in respiration. The results obtained under high light stress suggest that flexibility in the response of the mitochondrial electron transport chain is involved in sustaining photosynthetic rates in response to this stress while the saturated AP in AS-12 plants may contribute to the observed increase in photoinhibition.  相似文献   

7.
USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.  相似文献   

8.
Jasmonic acid (JA) is an established wound signal and also plays a role in plant-pathogen interactions. Application of JA to tobacco leaf explants, tobacco seedlings or to intact leaves via the petiole resulted in an increase in the specific activity of acid phosphatase (AP) and a reduction in overall protein content. Similar changes in AP activity were observed in wounded tissue and in tissue undergoing a hypersensitive response (HR) following infiltration with a virulent bacteria. The AP activity increase was restricted to wounded tissue and HR lesions and was absent from unwounded or uninfiltrated tissue on the same leaf. The JA response (AP increase and protein loss combined) was investigated pharmacologically. Co-incubation with EGTA, ruthenium red, LaCl3 and ()-verapamil blocked the JA response suggesting a requirement for Ca2+ mobilization. Similarly, okadaic acid, cantharidin and microcystin LR abrogated the response to JA implicating a protein phosphatase in the JA signal transduction mechanism(s). No evidence was found for kinase involvement as a mediator of JA signalling in this system.  相似文献   

9.
History and status of the area postrema   总被引:1,自引:0,他引:1  
The history of morphological and functional studies on the area postrema (AP) is traced for significant landmarks from 1896, when its name was conferred by Retzius, to 1960 when the foundation of inquiry had become firmly set. A comparative anatomical survey of the medulla oblongata identifies the AP in mammals and birds but not in amphibians and lower phyla even though other members of the so-called circumventricular organ system are represented in the more ancient creatures. Existence of the AP in reptiles is insufficiently documented. The transition from water- to land-dwelling animal life affords propitious neural remodeling for the emergence of the AP in evolving species. No vital role is known to be served by the AP. Nonetheless, its physical interposition between the blood and cerebrospinal fluid and its shared functions with the nucleus tractus solitarii indicate a capability for widespread somatovisceral influence in response to particular perturbations. It is suggested that the diverse systemic expressions of postremal activation are encompassed in the general syndrome of nausea and vomiting.  相似文献   

10.

Background

Acute pancreatitis (AP) is a frequent gastrointestinal disorder that causes significant morbidity, and its incidence has been progressively increasing. AP starts as a local inflammation in the pancreas that often leads to systemic inflammatory response and complications. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition in murine models has beneficial effects in inflammatory diseases, but its significance in AP remains unexplored.

Methodology/Principal Findings

To investigate whether sEH may have a causal role in AP we utilized Ephx2 knockout (KO) mice to determine the effects of sEH deficiency on cerulein- and arginine-induced AP. sEH expression increased at the protein and messenger RNA levels, as well as enzymatic activity in the early phase of cerulein- and arginine-induced AP in mice. In addition, amylase and lipase levels were lower in cerulein-treated Ephx2 KO mice compared with controls. Moreover, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1B and IL-6 were lower in cerulein-treated Ephx2 KO mice compared with controls. Further, Ephx2 KO mice exhibited decreased cerulein- and arginine-induced NF-κB inflammatory response, MAPKs activation and decreased cell death. Conclusions -These findings demonstrate a novel role for sEH in the progression of cerulein- and arginine-induced AP.  相似文献   

11.
The electrophysiological responses of neurons in the canine area postrema (AP) to ionophoretic application of neuropeptides and transmitters were studied and correlated with the presence or absence of an emetic response on systemic administration. Of 17 common neuropeptides 11 were emetic when applied systemically at doses of 0.03-0.35 mg/kg. The emesis was dose dependent and was no longer observed in animals with chronic ablation of the AP. The responses of 122 AP single units were recorded. Neurons were silent at rest, and most were excited by glutamate, apomorphine, and dopamine. Excitatory responses to each of eight emetic peptides were recorded in 22-65% of cells studied; no responses were found to two peptides that were not emetic. The response to glutamate was always a brief, high-frequency discharge; the responses to all 13 other excitatory substances were of long latency, low frequency, and long duration. With high ionophoretic current or multiple applications, units would frequently become spontaneously active for many minutes or longer. The similarity of response of so many substances on small neurons suggests a common ionic or metabolic mechanism underlying the response. The direct correlation between the occurrence of emesis on systemic administration and the presence of excitatory receptors on AP neurons provides strong support for the proposed role of the AP as the chemoreceptor trigger zone for emesis.  相似文献   

12.
13.
14.
Circulating endothelin influences area postrema neurons   总被引:1,自引:0,他引:1  
The recently described endothelium-derived constricting factor endothelin (ET) is a 21 amino acid peptide which is the most potent endogenous vasoconstrictor yet described. Binding sites for this peptide have been demonstrated within the circumventricular structures of the brain. One of these structures, the area postrema (AP), has been implicated in central cardiovascular control mechanisms. We have recently demonstrated that microinjection of ET into this structure results in dose-dependent changes in mean arterial blood pressure. The present studies were undertaken to test the hypothesis that ET elicits these effects as a result of influences on the activity of AP neurons. Using extracellular single unit recording techniques we have examined the effects of systemic administration of ET on the activity of AP neurons. A total of 60 AP neurons were tested for effects of ET (0.1-10.0 pmol) of which the spontaneous activity of 32 showed rapid (modified frequency of action potentials in the 60s following ET), reversible (return to baseline activity within 10 m) responses to this peptide. The initial response of the majority (84%) of AP neurons influenced by ET was excitatory, while a smaller proportion of AP neurons were inhibited (16%) by systemic administration of this peptide. We have also examined whether such excitatory effects were specific to AP neurons by comparing the above response characteristics to those observed in neurons in the adjacent commissural NTS. Such recordings demonstrated predominantly inhibitory (84% of influenced cells) responses of this group of NTS neurons to ET. While these findings demonstrate specific excitatory effects of systemic ET on the activity of AP neurons they also suggest a potential role for this peptide in controlling the activity of NTS neurons. These studies provide evidence that circulating ET influences AP neuronal function, although they offer no definitive information as to the specific site of action.  相似文献   

15.
The amino acid sequence of human tissue amyloid P component (AP) extracted by a modified method from the spleen of a patient with primary idiopathic amyloidosis was determined. AP is a glycoprotein composed of a pair of noncovalently bound pentameric discs with a subunit size of 23-25 kDa. Each subunit consists of 204 residues, a single disulfide bridge linking Cys 36 to Cys 95, and a carbohydrate moiety attached to Asn 32. The precursor of AP is the serum amyloid protein (SAP). The primary structure of AP presented here differs from the amino acid sequence of SAP previously reported, but is identical to the amino acid sequence of mature SAP deduced from the nucleotide sequence of complementary DNA clones. It shares 52% homology with the amended sequence of human C-reactive protein, an acute phase protein, and 68% homology with the Syrian hamster "female protein," another acute phase protein whose response is modulated by sex steroids. AP/SAP, C-reactive protein, and female protein belong to a family of plasma proteins called pentraxins and their considerable sequence homology is probably the result of gene duplication. Neither the physiological function of AP nor its possible pathological role in amyloidosis are yet known.  相似文献   

16.
The perifornical area of the hypothalamus has been known as the center for the defense response, or "fight or flight" response, which is characterized by a concomitant rise in arterial blood pressure (AP), heart rate (HR), and respiratory frequency (Rf). We examined whether orexin, a recently identified hypothalamic neuropeptide, contributes to the defense response and basal cardiovascular regulation using orexin knockout mice. Microinjection of a GABA-A receptor antagonist, bicuculline methiodide (0.1-1 mM in 20 nl), to the perifornical area in urethane-anesthetized wild-type mice elicited dose-dependent increases in AP, HR, and Rf. Although similar changes were observed in orexin knockout mice, intensities were smaller and duration was shorter than those in wild-type mice. Moreover, in an awake and freely moving condition, telemeter-indwelling orexin knockout mice showed diminished cardiovascular and behavioral responses to emotional stress in the resident-intruder test. We also found that basal AP in orexin knockout mice was significantly lower in both anesthetized (117 +/- 8 mmHg in wild type and 92 +/- 3 in knockout) and conscious (125 +/- 6 mmHg in wild type and 109 +/- 2 in knockout) conditions. alpha-Adrenergic blockade with prazosin or ganglion blockade with hexamethonium canceled the difference in basal AP. HR and cardiac contractile parameters by echocardiography did not differ between the two strains of mice. These results indicate lower sympathetic vasoconstrictor tone in knockout mice. The present study suggests that orexin-containing neurons in the perifornical area play a role as one of the efferent pathways of defense response and also operate as a regulator of AP at basal condition by activating sympathetic outflow.  相似文献   

17.
Transforming growth factor-beta2 (TGF-beta2) is known to suppress the immune response to cancer cells and plays a pivotal role in tumor progression by regulating key mechanisms including proliferation, metastasis, and angiogenesis. For targeted protein suppression the TGF-beta2-specific antisense oligodeoxynucleotide AP 12009 was developed. In vitro experiments have been performed to prove specificity and efficacy of the TGF-beta2 inhibitor AP 12009 employing patient-derived malignant glioma cells as well as peripheral blood mononuclear cells (PBMCs) from patients. Clinically, the antisense compound AP 12009 was assessed in three Phase I/II-studies for the treatment of patients with recurrent or refractory malignant (high-grade) glioma WHO grade III or IV. Although the study was not primarily designed as an efficacy evaluation, prolonged survival compared to literature data and response data were observed, which are very rarely seen in this tumor indication. Two patients experienced long-lasting complete tumor remissions. These results implicate targeted TGF-beta2-suppression using AP 12009 as a promising novel approach for malignant gliomas and other highly aggressive, TGF-beta-2-overexpressing tumors.  相似文献   

18.
As a c-fms-interacting protein, we cloned a novel adaptor molecule, signal-transducing adaptor protein-2 (STAP-2), which contains pleckstrin homology- and Src homology 2-like (PH and SRC) domains and a proline-rich region. STAP-2 is structurally related to STAP-1/BRDG1 (BCR downstream signaling-1), which we had cloned previously from hematopoietic stem cells. STAP-2 is a murine homologue of a recently identified adaptor molecule, BKS, a substrate of BRK tyrosine kinase. STAP-2 was tyrosine-phosphorylated and translocated to the plasma membrane in response to epidermal growth factor when overexpressed in fibroblastic cells. To define the function of STAP-2, we generated mice lacking the STAP-2 gene. STAP-2 mRNA was strongly induced in the liver in response to lipopolysaccharide and in isolated hepatocytes in response to interleukin-6. In the STAP-2(-/-) hepatocytes, the interleukin-6-induced expression of acute-phase (AP) genes and the tyrosine-phosphorylation level of STAT3 were reduced specifically at the late phase (6-24 h) of the response. These data indicate that STAP-2 plays a regulatory role in the AP response in systemic inflammation. STAP-2 contains a YXXQ motif in the C-terminal region that is a potential STAT3-binding site. Overexpression of wild-type STAP-2, but not of mutants lacking this motif, enhanced the AP response element reporter activity and an AP protein production. These data suggest that STAP-2 is a new class of adaptor molecule that modulates STAT3 activity through its YXXQ motif.  相似文献   

19.
In the early stage of acute pancreatitis (AP), abundant cytokines induced by local pancreatic inflammation enter the bloodstream, further cause systemic inflammatory response syndrome (SIRS) by “trigger effect”, which eventually leads to multiple organ dysfunction syndrome (MODS). During SIRS and MODS, the intestinal barrier function was seriously damaged accompanied by the occurrence of gut-derived infection which forms a “second hit summit” by inflammatory overabundance. Gastrointestinal microecology, namely the biologic barrier, could be transformed into a pathogenic state, which is called microflora dysbiosis when interfered by the inflammatory stress during AP. More and more evidences indicate that gastrointestinal microflora dysbiosis plays a key role in “the second hit” induced by AP gut-derived infection. Therefore, the maintenance of gastrointestinal microecology balance is likely to provide an effective method in modulating systemic infection of AP. This article reviewed the progress of gastrointestinal microecology in AP to provide a reference for deeply understanding the pathogenic mechanisms of AP and identifying new therapeutic targets.  相似文献   

20.
Kole MH 《Neuron》2011,71(4):671-682
In central neurons the first node of Ranvier is located at the first axonal branchpoint, ~ 100 μm from the axon initial segment where synaptic inputs are integrated and converted into action potentials (APs). Whether the first node contributes to this signal transformation is not well understood. Here it was found that in neocortical layer 5 axons, the first branchpoint is required for intrinsic high-frequency (≥ 100 Hz) AP bursts. Furthermore, block of nodal Na(+) channels or axotomy of the first node in intrinsically bursting neurons depolarized the somatic AP voltage threshold (~ 5 mV) and eliminated APs selectively within a high-frequency cluster in response to steady currents or simulated synaptic inputs. These results indicate that nodal persistent Na(+) current exerts an anterograde influence on AP initiation in the axon initial segment, revealing a computational role of the first node of Ranvier beyond conduction of the propagating AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号