首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
Studies examining species range shifts in the face of climate change have consistently found that response patterns are complex and varied, suggesting that ecological traits might be affecting species response. However, knowledge of how the traits of a species determine its response to climate change is still poorly understood. Here we investigate the role of species-specific climate niche breadth in forecasting bumblebee (Bombus spp.) responses to regional climate warming in the Cantabrian Range (north-western Iberian Peninsula). Climate niche breadth was defined using known data for occurrences of specific species at their continental (i.e., European) scale of distribution. For each bumblebee species, climate niche breadth was found to be related to (1) the elevational range shifts of species between their historical (1988–1989) and recent (2007–2009) distribution and (2) the variation in the climatic conditions of the localities they inhabited (i.e., the local climate space) between both study periods. Our results show a strong relationship between climate niche breadth, particularly thermal niche breadth, and the response of bumblebee species to climate warming, but only when this response was determined as variations in local climate space. The main conclusions of our work are thus twofold. First, variations in the climatic conditions underlying range shifts are useful in making accurate assessments of the impact of climate change on species distributions. Second, climate niche breadth is a particularly informative ecological trait for forecasting variations in species responses to climate change.  相似文献   

2.
A. S. Kallimanis 《Oikos》2010,119(1):197-200
One possible response of species to climate change is shifting their geographical range so as to track their climatic niche. Many concerns have been raised about the species ability to disperse effectively. I argue that species may have mechanisms, like temperature-dependent sex determination (TSD), that are responsive to climate change and may facilitate an appropriate shift in their geographical range. More specifically, I hypothesize that, under stable climatic conditions, populations of some TSD species at the edge of their range are regulated by reduced growth rate (due to skewed sex ratios or due to limited availability of suitable nesting sites). Under climate change, these populations face new climatic conditions that trigger fast population growth (e.g. by more balanced sex ratio, or greater availability of nesting sites). Increased population size may lead to increased dispersal, and thus efficient colonization of the newly created habitat patches. So, the species rapidly tracks the geographical position of its climatic niche. This conceptual model is speculative but it leads to specific hypotheses, and opens up new research questions about the existence of prior adaptations that will enable the appropriate response to climate change.  相似文献   

3.
Vulnerability of South African animal taxa to climate change   总被引:7,自引:1,他引:6  
The responsiveness of South African fauna to climate change events is poorly documented and not routinely incorporated into regional conservation planning. We model the likely range alterations of a representative suite of 179 animal species to climate change brought about by the doubling of CO2 concentrations. This scenario is expected to cause a mean temperature increase of 2 °C. We applied a multivariate climate envelope approach and evaluated model performance using the most comprehensive bird data set. The results were encouraging, although model performance was inconsistent in the eastern coastal area of the country. The levels of climate change induced impacts on species ranges varied from little impact to local extinction. Some 17% of species expanded their ranges, 78% displayed range contraction (4–98%), 3% showed no response and 2% became locally extinct. The majority of range shifts (41%) were in an easterly direction, reflecting the east–west aridity gradient across the country. Species losses were highest in the west. Substantially smaller westward shifts were present in some eastern species. This may reflect a response to the strong altitudinal gradient in this region, or may be a model artifact. Species range change (composite measure reflecting range contraction and displacement) identified selected species that could act as climate change indicator taxa. Red‐data and vulnerable species showed similar responses but were more likely to display range change (58% vs. 43% for all species). Predictions suggest that the flagship, Kruger National Park conservation area may loose up to 66% of the species included in this analysis. This highlights the extent of the predicted range shifts, and indicates why conflicts between conservation and other land uses are likely to escalate under conditions of climate change.  相似文献   

4.
Range shift, a widespread response to climate change, will depend on species abilities to withstand warmer climates. However, these abilities may vary within species and such intraspecific variation can strongly impact species responses to climate change. Facing warmer climates, individuals should disperse according to their thermal optimum with consequences for species range shifts. Here, we studied individual dispersal of a reptile in response to climate warming and preferred temperature using a semi‐natural warming experiment. Individuals with low preferred temperatures dispersed more from warmer semi‐natural habitats, whereas individuals with higher preferred temperatures dispersed more from cooler habitats. These dispersal decisions partly matched phenotype‐dependent survival rates in the different thermal habitats, suggesting adaptive dispersal decisions. This process should result into a spatial segregation of thermal phenotypes along species moving ranges which should facilitate local adaptation to warming climates. We therefore call for range shift models including intraspecific variation in thermal phenotype and dispersal decision.  相似文献   

5.
The occurrence and location of long-term refugia determine the current patterns of biodiversity on Earth. The importance of the refugial debate is certain to increase in response to observed and expected species extinctions caused by climate change. Small areas where species survive outside their core range are important, as unique natural phenomena and model systems for observing the response of species to climate change. They can play a crucial role as potential sources for species recovery in the future or can act as progenitors of a new species. While most authors believe that sites connected with only long-term isolation should be included into the refugium concept, this approach can result in the loss of linkage between the ecological and evolutionary processes taking place during different phases of the species range dynamics. Moreover, the papers often interpret the nature of described phenomena in different ways. In response, the conceptual scheme given in our letter summarises the patterns which occur during species range shift. It proposes an equivalent scheme for small refugial sites according to their function and capacity, based on the relict species concept. This approach and proposed terminology is tested on the example of two plant species with different pattern of the long term range dynamics. Our paper highlights the importance of sites harboring ‘trailing-edge’ young relicts for the future long-term persistence of the species (as old relicts) under unfavorable regional conditions. By considering the age gradients of small refugial sites it is possible to reveal community interactions, species traits or genes that drive the responses of biota to climate changes.  相似文献   

6.
Because species affect ecosystem functioning, understanding migration processes is a key component of predicting future ecosystem responses to climate change. This study provides evidence of range expansion under current climatic conditions of an indigenous species with strong ecosystem effects. Surveys of stands along the northern distribution limit of lodgepole pine (Pinus contorta var. latifolia) in central Yukon Territory, Canada showed consistent increases in pine dominance following fire. These patterns differed strongly from those observed at sites where pine has been present for several thousand years. Differences in species thinning rates are unlikely to account for the observed increases in pine dominance. Rates of pine regeneration at its range limits were equivalent to those of spruce, indicating a capacity for rapid local population expansion. The study also found no evidence of strong climatic limitation of pine population growth at the northern distribution limit. We interpret these data as evidence of current pine expansion at its range limits and conclude that the northern distribution of lodgepole pine is not in equilibrium with current climate. This study has implications for our ability to predict vegetation response to climate change when populations may lag in their response to climate.  相似文献   

7.
AimPredictions of how the geographical ranges of species change implicitly assume that range can be determined without invoking climate change. The aim here was to determine how accurate predictions of range change might be before entertaining global climatic change. LocationWorldwide. MethodsAll the documented global biological control translocations of ladybirds (Coccinellidae: Chilocorus spp.) were analysed with the ecoclimatic program, CLIMEX. This program determines species distributions in relation to climate, and can be used to express the favourableness of different localities for a species. CLIMEX is also a useful exploratory tool for determining the likelihood of establishment of species introduced from one area to another. ResultsPredictive models were developed based on the likelihood of establishment of fifteen Chilocorus spp. relative to their physiological characteristics and climatic tolerances. This likelihood was compared with actual establishment with a resultant range of 0% accuracy to 100% accuracy. Only four (26.7%) species climatic tolerances could the predicted with 100% certainty. The general lack of accurate prediction was because climate is not always the overriding feature determining whether a species will establish or not. Other determinants, such as localized response to microclimate, phenology, host type and availability, presence of natural enemies and hibernation sites play a varying role over and above climate in determining whether a species will establish at a new locality. Main conclusionsThis study shows that even in the absence of climate change, range cannot always be determined, which means that most predictions of range change with climate change are likely to be wrong.  相似文献   

8.
This study assessed potential changes in the distributions of Australian butterfly species in response to global warming. The bioclimatic program, BIOCLIM, was used to determine the current climatic ranges of 77 butterfly species restricted to Australia. We found that the majority of these species had fairly wide climatic ranges in comparison to other taxa, with only 8% of butterfly species having a mean annual temperature range spanning less than 3 °C. The potential changes in the distributions of 24 butterfly species under four climate change scenarios for 2050 were also modelled using BIOCLIM. Results suggested that even species with currently wide climatic ranges may still be vulnerable to climate change; under a very conservative climate change scenario (with a temperature increase of 0.8–1.4 °C by 2050) 88% of species distributions decreased, and 54% of species distributions decreased by at least 20%. Under an extreme scenario (temperature increase of 2.1–3.9 °C by 2050) 92% of species distributions decreased, and 83% of species distributions decreased by at least 50%. Furthermore, the proportion of the current range that was contained within the predicted range decreased from an average of 63% under a very conservative scenario to less than 22% under the most extreme scenario. By assessing the climatic ranges that species are currently exposed to, the extent of potential changes in distributions in response to climate change and details of their life histories, we identified species whose characteristics may make them particularly vulnerable to climate change in the future.  相似文献   

9.
Understanding how biodiversity will respond to future climate change is a major conservation and societal challenge. Climate change is predicted to force many species to shift their ranges in pursuit of suitable conditions. This study aims to use landscape genetics, the study of the effects of environmental heterogeneity on the spatial distribution of genetic variation, as a predictive tool to assess how species will shift their ranges to track climatic changes and inform conservation measures that will facilitate movement. The approach is based on three steps: 1) using species distribution models (SDMs) to predict suitable ranges under future climate change, 2) using the landscape genetics framework to identify landscape variables that impede or facilitate movement, and 3) extrapolating the effect of landscape connectivity on range shifts in response to future climate change. I show how this approach can be implemented using the publicly available genetic dataset of the grey long-eared bat, Plecotus austriacus, in the Iberian Peninsula. Forest cover gradient was the main landscape variable affecting genetic connectivity between colonies. Forest availability is likely to limit future range shifts in response to climate change, primarily over the central plateau, but important range shift pathways have been identified along the eastern and western coasts. I provide outputs that can be directly used by conservation managers and review the viability of the approach. Using landscape genetics as a predictive tool in combination with SDMs enables the identification of potential pathways, whose loss can affect the ability of species to shift their range into future climatically suitable areas, and the appropriate conservation management measures to increase landscape connectivity and facilitate movement.  相似文献   

10.
Understanding the biological correlates of range sizes in plant species is important to predict the response of species to climate change. We used climate envelope models to estimate species’ potential range size and range filling for 48 European tree species. We hypothesized that potential range size relates to the climatic tolerances of plant species, and that the degree of range filling is influenced by species dispersal. We tested these hypotheses using, for each species, estimates for tolerance to cold and drought, type of dispersal, fruit size and seed size. Consistent with previous observations, we found that both the size of potential ranges and range filling increase from south to north. Species tolerance to temperature and water stress, as well as their dispersal-related traits also showed marked spatial patterns. There was, moreover, a significant positive partial correlation between cold tolerance and potential range size, when drought tolerance was partialed out, and a non-significant partial correlation between drought tolerance and potential range size, with cold tolerance partialed out. Range filling was not significantly larger in species dispersed by wind than in those dispersed by animals. There was a negative correlation between seed mass and range filling, but its statistical significance varied across different subsets of species and climate envelope algorithms; the correlation between fruit length and range filling was not significant. We conclude that climatic tolerances and dispersal traits influence species range size and range filling, and thus affect the range dynamics of species in response to global change. Using traits will therefore help to predict future distribution of species under climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号