首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A denaturant-mediated protein unfolding model, which is different from already existing ones based on the assumption that denaturant competes for water molecules to interact and thus reduces water–protein interactions, which leads to unfolding phenomenon, has been developed with a detailed mathematical justification. Theoretical results suggested that the parameter (mu) obtained from the usual linear extrapolation model must be a linear function of the number of bound water molecules (n) on protein with a zero intercept. However, application of this theory to a set of proteins for which mu values for urea denaturation are already known showed that mu was a linear function of n but with a nonzero intercept. Finally this nonzero intercept was attributed to binding of denaturant to protein at n = 0. Detailed investigation of this factor showed that average equilibrium constant for binding of urea with aromatic side chains (generally nonpolar side chains) was kb ≈ 0.65 ± 0.45 mol−1, which agreed well with earlier experimental estimations, and also suggested that an integrated approach was necessary to avoid discrepancy in ΔGH2O estimated from different models.  相似文献   

2.
Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol−1 and 14.90 Kcal mol−1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp) is 3.42 Kcal mol−1 K−1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.  相似文献   

3.
We used an H2-purging culture vessel to replace an H2-consuming syntrophic partner, allowing the growth of pure cultures of Syntrophothermus lipocalidus on butyrate and Aminobacterium colombiense on alanine. By decoupling the syntrophic association, it was possible to manipulate and monitor the single organism's growth environment and determine the change in Gibbs free energy yield (ΔG) in response to changes in the concentrations of reactants and products, the purging rate, and the temperature. In each of these situations, H2 production changed such that ΔG remained nearly constant for each organism (−11.1 ± 1.4 kJ mol butyrate−1 for S. lipocalidus and −58.2 ± 1.0 kJ mol alanine−1 for A. colombiense). The cellular maintenance energy, determined from the ΔG value and the hydrogen production rate at the point where the cell number was constant, was 4.6 × 10−13 kJ cell−1 day−1 for S. lipocalidus at 55°C and 6.2 × 10−13 kJ cell−1 day−1 for A. colombiense at 37°C. S. lipocalidus, in particular, seems adapted to thrive under conditions of low energy availability.  相似文献   

4.
Understanding protein dynamics requires a comprehensive knowledge of the underlying potential energy surface that governs the motion of each individual protein molecule. Single molecule mechanical studies have provided the unprecedented opportunity to study the individual unfolding pathways along a well defined coordinate, the end-to-end length of the protein. In these experiments, unfolding requires surmounting an energy barrier that separates the native from the extended state. The calculation of the absolute value of the barrier height has traditionally relied on the assumption of an attempt frequency, υ. Here we used single molecule force-clamp spectroscopy to directly determine the value of υ for mechanical unfolding by measuring the unfolding rate of the small protein ubiquitin at varying temperatures. Our experiments demonstrate a significant effect of the temperature on the mechanical rate of unfolding. By extrapolating the unfolding rate in the absence of force for different temperatures, varying within the range spanning from 5 to 45 °C, we measured a value for the activation barrier of ΔG = 71 ± 5 kJ/mol and an exponential prefactor υ ∼4 × 109 s−1. Although the measured prefactor value is 3 orders of magnitude smaller than the value predicted by the transition state theory (∼6 × 1012 s−1), it is 400-fold higher than that encountered in analogous experiments studying the effect of temperature on the reactivity of a protein-embedded disulfide bond (∼107 m−1 s−1). This approach will allow quantitative characterization of the complete energy landscape of a folding polypeptide from highly extended states, of capital importance for proteins with elastic function.  相似文献   

5.
Sterigmatocystin (STG), a biosynthesis precursor of aflatoxin B1, is well known for its toxic and carcinogenic effects in humans and animals. STG derivatives and protein conjugates are needed for generation of monoclonal antibodies (mAbs). This work describes a reliable and fast synthesis of novel STG derivatives, based on which novel STG bovine serum albumin conjugates were prepared. With the novel STG bovine serum albumin conjugates, three sensitive and specific mAbs against STG, named VerA 3, VerA 4, and VerA 6, were prepared by semi-solid hypoxanthine/aminopterin/thymidine (HAT) medium using a modified two-step screening procedure. They exhibited high affinity for STG and no cross-reactivity (CR) with aflatoxins B1, B2, G1, G2, and M1. Based on the most sensitive antibody VerA 3, an ultra-sensitive competitive enzyme-linked immunosorbent assay (ELISA) was developed for STG in wheat, maize, and peanuts. Assays were performed in the STG-GA-BSA-coated (0.5 µg·mL−1) ELISA format, in which the antibody was diluted to 1∶80,000. Several physicochemical factors influencing assay performance, such as pH, ionic strength, blocking solution, and diluting solution, were optimized. The final results showed that the assays had the detection limits of 0.08 ng·g−1 for wheat, 0.06 ng·g−1 for maize, and 0.1 ng·g−1 for peanuts, inter-assay and intra-assay variations of less than 10%, and recoveries ranging from 83% to 110%. These recoveries were in good agreement with those obtained by using HPLC-MS/MS method (90–104%), indicating the importance of the mAb VerA 3 in the study of STG in crude agricultural products.  相似文献   

6.
Carter OG  Lathwell DJ 《Plant physiology》1967,42(10):1407-1412
The uptake of orthophosphate (32P) by excised corn roots, Zea mays L. was studied using roots grown on 0.2 mm CaSO4. Nine concentrations of KH2PO4 from 1 to 256 μm were used at temperatures of 20°, 30°, and 40°. Enzyme kinetic analysis was applied to the data obtained. Two apparent mechanisms (sites) of phosphate uptake were observed, 1 dominating at high P concentrations and 1 at low P concentrations. A Km of 1.36 × 10−4 and a Vmax of 177 × 10−9 moles per gram of roots per hour at 30° was calculated for the mechanism dominating at high P concentrations. Similar calculations gave a Km of 6.09 × 10−6 and a Vmax of 162 × 10−9 moles per gram of roots per hour at 30° for the mechanism dominating at low P concentrations. The Q10 for both mechanisms was approximately 2. Calculation of thermodynamic values from the data gave ΔF of − 5200 cal, ΔH of − 950 to − 1400 cal, and a enthalpy of activation (A) of 10,300 to 13,800 cal per mole for the mechanism dominating at high P concentrations. Similar calculations from the data for the mechanism dominating at low P concentrations gave a ΔF of − 7300 cal, ΔH of − 10,700 to − 8200 cal, and a A of 9300 to 18,900 cal per mole. If the dual mechanism interpretation of this kind of data adequately describes this system, then both mechanisms of P absorption by corn roots involve chemical reactions.  相似文献   

7.
Two carbohydrate binding modules (DD1 and DD2) belonging to CBM32 are located at the C terminus of a chitosanase from Paenibacillus sp. IK-5. We produced three proteins, DD1, DD2, and tandem DD1/DD2 (DD1+DD2), and characterized their binding ability. Transition temperature of thermal unfolding (Tm) of each protein was elevated by the addition of cello-, laminari-, chitin-, or chitosan-hexamer (GlcN)6. The Tm elevation (ΔTm) in DD1 was the highest (10.3 °C) upon the addition of (GlcN)6 and was markedly higher than that in DD2 (1.0 °C). A synergistic effect was observed (ΔTm = 13.6 °C), when (GlcN)6 was added to DD1+DD2. From isothermal titration calorimetry experiments, affinities to DD1 were not clearly dependent upon chain length of (GlcN)n; ΔGr° values were −7.8 (n = 6), −7.6 (n = 5), −7.6 (n = 4), −7.6 (n = 3), and −7.1 (n = 2) kcal/mol, and the value was not obtained for GlcN due to the lowest affinity. DD2 bound (GlcN)n with the lower affinities (ΔGr° = −5.0 (n = 3) ∼ −5.2 (n = 6) kcal/mol). Isothermal titration calorimetry profiles obtained for DD1+DD2 exhibited a better fit when the two-site model was used for analysis and provided greater affinities to (GlcN)6 for individual DD1 and DD2 sites (ΔGr° = −8.6 and −6.4 kcal/mol, respectively). From NMR titration experiments, (GlcN)n (n = 2∼6) were found to bind to loops extruded from the core β-sandwich of individual DD1 and DD2, and the interaction sites were similar to each other. Taken together, DD1+DD2 is specific to chitosan, and individual modules synergistically interact with at least two GlcN units, facilitating chitosan hydrolysis.  相似文献   

8.
A new oriented method using a diazonium salt reaction was developed for linking β 2-adrenoceptor (β 2-AR) on the surface of macroporous silica gel. Stationary phase containing the immobilised receptor was used to investigate the interaction between β 2-AR and ephedrine plus pseudoephedrine by zonal elution. The isotherms of the two drugs best fit the Langmuir model. Only one type of binding site was found for ephedrine and pseudoephedrine targeting β 2-AR. At 37 °C, the association constants during the binding were (5.94±0.05)×103/M for ephedrine and (3.80±0.02) ×103/M for pseudoephedrine, with the binding sites of (8.92±0.06) ×10−4 M. Thermodynamic studies showed that the binding of the two compounds to β 2-AR was a spontaneous reaction with exothermal processes. The ΔGθ, ΔHθ and ΔSθ for the interaction between ephedrine and β 2-AR were −(22.33±0.04) kJ/mol, −(6.51±0.69) kJ/mol and 50.94±0.31 J/mol·K, respectively. For the binding of pseudoephedrine to the receptor, these values were −(21.17±0.02) kJ/mol, −(7.48±0.56) kJ/mol and 44.13±0.01 J/mol·K. Electrostatic interaction proved to be the driving force during the binding of the two drugs to β 2-AR. The proposed immobilised method will have great potential for attaching protein to solid substrates and realizing the interactions between proteins and drugs.  相似文献   

9.
We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3 to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3 by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3 ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3 reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2 to consumed NH4+ (ΔNO2/ΔNH4+) and produced NO3 to consumed NH4+ (ΔNO3/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment.  相似文献   

10.
Oscillatory behavior of mitochondrial inner membrane potential (ΔΨm) is commonly observed in cells subjected to oxidative or metabolic stress. In cardiac myocytes, the activation of inner membrane pores by reactive oxygen species (ROS) is a major factor mediating intermitochondrial coupling, and ROS-induced ROS release has been shown to underlie propagated waves of ΔΨm depolarization as well as synchronized limit cycle oscillations of ΔΨm in the network. The functional impact of ΔΨm instability on cardiac electrophysiology, Ca2+ handling, and even cell survival, is strongly affected by the extent of such intermitochondrial coupling. Here, we employ a recently developed wavelet-based analytical approach to examine how different substrates affect mitochondrial coupling in cardiac cells, and we also determine the oscillatory coupling properties of mitochondria in ventricular cells in intact perfused hearts. The results show that the frequency of ΔΨm oscillations varies inversely with the size of the oscillating mitochondrial cluster, and depends on the strength of local intermitochondrial coupling. Time-varying coupling constants could be quantitatively determined by applying a stochastic phase model based on extension of the well-known Kuramoto model for networks of coupled oscillators. Cluster size-frequency relationships varied with different substrates, as did mitochondrial coupling constants, which were significantly larger for glucose (7.78 × 10−2 ± 0.98 × 10−2 s−1) and pyruvate (7.49 × 10−2 ± 1.65 × 10−2 s−1) than lactate (4.83 × 10−2 ± 1.25 × 10−2 s−1) or β-hydroxybutyrate (4.11 × 10−2 ± 0.62 × 10−2 s−1). The findings indicate that mitochondrial spatiotemporal coupling and oscillatory behavior is influenced by substrate selection, perhaps through differing effects on ROS/redox balance. In particular, glucose-perfusion generates strong intermitochondrial coupling and temporal oscillatory stability. Pathological changes in specific catabolic pathways, which are known to occur during the progression of cardiovascular disease, could therefore contribute to altered sensitivity of the mitochondrial network to oxidative stress and emergent ΔΨm instability, ultimately scaling to produce organ level dysfunction.  相似文献   

11.
In previous papers of this series the temperature-dependent Raman spectra of poly(dA)·poly(dT) and poly(dA–dT)·poly(dA–dT) were used to characterize structurally the melting and premelting transitions in DNAs containing consecutive A·T and alternating A·T/T·A base pairs. Here, we describe procedures for obtaining thermodynamic parameters from the Raman data. The method exploits base-specific and backbone-specific Raman markers to determine separate thermodynamic contributions of A, T and deoxyribosyl-phosphate moieties to premelting and melting transitions. Key findings include the following: (i) Both poly(dA)·poly(dT) and poly(dA–dT)· poly(dA–dT) exhibit robust premelting transitions, due predominantly to backbone conformational changes. (ii) The significant van’t Hoff premelting enthalpies of poly(dA)·poly(dT) [ΔHvHpm = 18.0 ± 1.6 kcal·mol–1 (kilocalories per mole cooperative unit)] and poly(dA–dT)·poly(dA–dT) (ΔHvHpm = 13.4 ± 2.5 kcal·mol–1) differ by an amount (~4.6 kcal·mol–1) estimated as the contribution from three-centered inter-base hydrogen bonding in (dA)n·(dT)n tracts. (iii) The overall stacking free energy of poly(dA)· poly(dT) [–6.88 kcal·molbp–1 (kilocalories per mole base pair)] is greater than that of poly(dA–dT)· poly(dA–dT) (–6.31 kcal·molbp–1). (iv) The difference between stacking free energies of A and T is significant in poly(dA)·poly(dT) (ΔΔGst = 0.8 ± 0.3 kcal· molbp–1), but marginal in poly(dA–dT)·poly(dA–dT) (ΔΔGst = 0.3 ± 0.3 kcal·molbp–1). (v) In poly(dA)· poly(dT), the van’t Hoff parameters for melting of A (ΔHvHA = 407 ± 23 kcal·mol–1, ΔSvHA = 1166 ± 67 cal·°K–1·mol–1, ΔGvH(25°C)A = 60.0 ± 3.2 kcal·mol–1) are clearly distinguished from those of T (ΔHvHT = 185 ± 38 kcal·mol–1, ΔSvHT = 516 ± 109 cal·°K–1·mol–1, ΔGvH(25°C)T = 27.1 ± 5.5 kcal·mol–1). (vi) Similar relative differences are observed in poly(dA–dT)· poly(dA–dT) (ΔHvHA = 333 ± 54 kcal·mol–1, ΔSvHA = 961 ± 157 cal·°K–1·mol–1, ΔGvH(25°C)A = 45.0 ± 7.6 kcal· mol–1; ΔHvHT = 213 ± 30 kcal·mol–1, ΔSvHT = 617 ± 86 cal·°K–1·mol–1, ΔGvH(25°C)T = 29.3 ± 4.9 kcal·mol–1). The methodology employed here distinguishes thermodynamic contributions of base stacking, base pairing and backbone conformational ordering in the molecular mechanism of double-helical B DNA formation.  相似文献   

12.
When administered in serum, an efficacious therapeutic antibody should be homogeneous to minimize immune reactions or injection site irritation during administration. Monoclonal antibody (mAb) phase separation is one type of inhomogeneity observed in serum, and thus screening potential phase separation of mAbs in serum could guide lead optimization. However, serum contains numerous components, making it difficult to resolve mAb/serum mixtures at a scale amenable to analysis in a discovery setting. To address these challenges, a miniaturized assay was developed that combined confocal microscopy with Raman spectroscopy. The method was examined using CNTO607, a poorly-soluble anti-interleukin-13 human mAb, and CNTO3930, a soluble anti-respiratory syncytial virus humanized mAb. When CNTO607 was diluted into serum above 4.5 mg/mL, phase separation occurred, resulting in droplet formation. Raman spectra of droplet phases in mixtures included bands at 1240 and 1670 cm−1, which are typical of mAb β-sheets, and lacked bands at 1270 and 1655 cm−1, which are typical of α-helices. The continuous phases included bands at 1270 and 1655 cm−1 and lacked those at 1240 and 1670 cm−1. Therefore, CNTO607 appeared to be sequestered within the droplets, while albumin and other α-helix-forming serum proteins remained within the continuous phases. In contrast, CNTO3930 formed only one phase, and its Raman spectra contained bands at 1240, 1670, 1270 and 1655 cm,−1 demonstrating homogeneous distribution of components. Our results indicate that this plate-based method utilizing confocal Raman spectroscopy to probe liquid-liquid phases in mAb/serum mixtures can provide a screen for phase separation of mAb candidates in a discovery setting.  相似文献   

13.
Formate-dependent proton reduction to H2 (HCOO + H2O → HCO3 + H2) has been reported for hyperthermophilic Thermococcus strains. In this study, a hyperthermophilic archaeon, Thermococcus onnurineus strain NA1, yielded H2 accumulation to a partial pressure of 1 × 105 to 7 × 105 Pa until the values of Gibbs free energy change (ΔG) reached near thermodynamic equilibrium (−1 to −3 kJ mol−1). The bioenergetic requirement for the metabolism to conserve energy was demonstrated by ΔG values as small as −5 kJ mol−1, which are less than the biological minimum energy quantum, −20 kJ mol−1, as calculated by Schink (B. Schink, Microbiol. Mol. Biol. Rev. 61:262-280, 1997). Considering formate as a possible H2 storage material, the H2 production potential of the strain was assessed. The volumetric H2 production rate increased linearly with increasing cell density, leading to 2,820 mmol liter−1 h−1 at an optical density at 600 nm (OD600) of 18.6, and resulted in the high specific H2 production rates of 404 ± 6 mmol g−1 h−1. The H2 productivity indicates the great potential of T. onnurineus strain NA1 for practical application in comparison with H2-producing microbes. Our result demonstrates that T. onnurineus strain NA1 has a highly efficient metabolic system to thrive on formate in hydrothermal systems.  相似文献   

14.
1. Two species of double-helical RNA isolated from mycelium of Penicillium chrysogenum were titrated with acid at 25°C and 95°C (solvent 0.1m-sodium phosphate buffer). At 25°C denaturation occurred at about pH3. At 95°C in the denatured form cytosine residues titrated as a simple monobasic acid of pK3.9 compared with pK2.5 for the native form at 25°C. 2. On thermal denaturation in neutral and acidic solutions one species of RNA (38% rG·rC) `melted' in three distinct stages, equivalent to a mixture of three species, namely one of about 25% rG·rC, another of about 33% rG·rC and a third of about 46% rG·rC: the relative proportions were 0.25:0.35:0.40. 3. On thermal denaturation in acidic solutions the increase in the fraction of ionized cytosine residues concomitant with the `melting' of rG·rC base pair also affects the spectrum especially at 280nm and serves to enhance the contribution of rG·rC base pairs at this wavelength. The increment in ε(P) at 280nm on `melting' an rG·rC base pair approaches 53501·mol−1·cm−1 depending on pH, compared with 33501·mol−1·cm−1 at pH7. In contrast ε(P) at 280nm is scarcely affected by `melting' rA·rU base pairs or by the protonization of adenine residues. 4. Changes in the spectrum of Escherichia coli rRNA on denaturation in acidic solutions were studied to yield the mole fractions of rA·rU and rG·rC base pairs `melting' at particular pH values.  相似文献   

15.
The effects of 3′ single-strand dangling-ends of different lengths, sequence identity of hairpin loop, and hairpin loop biotinylation at different loop residues on DNA hairpin thermodynamic stability were investigated. Hairpins contained 16 bp stem regions and five base loops formed from the sequence, 5′-TAGTCGACGTGGTCC-N5-GGACCACGTCGACTAG-En-3′. The length of the 3′ dangling-ends (En) was n = 13 or 22 bases. The identities of loop bases at positions 2 and 4 were varied. Biotinylation was varied at loop base positions 2, 3 or 4. Melting buffers contained 25 or 115 mM Na+. Average tm values for all molecules were 73.5 and 84.0°C in 25 and 115 mM Na+, respectively. Average two-state parameters evaluated from van’t Hoff analysis of the melting curve shapes in 25 mM Na+ were ΔHvH = 84.8 ± 15.5 kcal/mol, ΔSvH = 244.8 ± 45.0 cal/K·mol and ΔGvH = 11.9 ± 2.1 kcal/mol. In 115 mM Na+, two-state parameters were not very different at ΔHvH = 80.42 ± 12.74 kcal/mol, ΔSvH = 225.24 ± 35.88 cal/K·mol and ΔGvH = 13.3 ± 2.0 kcal/mol. Differential scanning calorimetry (DSC) was performed to test the validity of the two-state assumption and evaluated van’t Hoff parameters. Thermodynamic parameters from DSC measurements (within experimental error) agreed with van’t Hoff parameters, consistent with a two-state process. Overall, dangling-end DNA hairpin stabilities are not affected by dangling-end length, loop biotinylation or sequence and vary uniformly with [Na+]. Consider able freedom is afforded when designing DNA hairpins as probes in nucleic acid based detection assays, such as microarrays.  相似文献   

16.

Background

Bovine serum albumin (BSA) contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA), as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques.

Methodology/Principal Findings

The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV) was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH) and entropy (ΔS) for the interaction were detected at −4.11±0.18 kJ·mol−1 and −76.59±0.32 J·mol−1·K−1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG) values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA) of the BSA, which was also substantiated by the molecular docking studies.

Conclusions/Significance

In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic and medicinal preparations may be clinically and practically significant, especially in the design of new naringin palmitate-inspired drugs.  相似文献   

17.
In this work, we integrated terminal truncation and N-terminal oligopeptide fusion as a novel protein engineering strategy to improve specific activity and catalytic efficiency of alkaline α-amylase (AmyK) from Alkalimonas amylolytica. First, the C terminus or N terminus of AmyK was partially truncated, yielding 12 truncated mutants, and then an oligopeptide (AEAEAKAKAEAEAKAK) was fused at the N terminus of the truncated AmyK, yielding another 12 truncation-fusion mutants. The specific activities of the truncation-fusion mutants AmyKΔC500-587::OP and AmyKΔC492-587::OP were 25.5- and 18.5-fold that of AmyK, respectively. The kcat/Km was increased from 1.0 × 105 liters · mol−1 · s−1 for AmyK to 30.6 × and 23.2 × 105 liters · mol−1 · s−1 for AmyKΔC500-587::OP and AmyKΔC492-587::OP, respectively. Comparative analysis of structure models indicated that the higher flexibility around the active site may be the main reason for the improved catalytic efficiency. The proposed terminal truncation and oligopeptide fusion strategy may be effective to engineer other enzymes to improve specific activity and catalytic efficiency.  相似文献   

18.

Background

In this case study, we analysed the properties of unfolded states and pathways leading to complete denaturation of a multimeric chick pea β-galactosidase (CpGAL), as obtained from treatment with guanidium hydrochloride, urea, elevated temperature and extreme pH.

Methodology/Principal Findings

CpGAL, a heterodimeric protein with native molecular mass of 85 kDa, belongs to α+β class of protein. The conformational stability and thermodynamic parameters of CpGAL unfolding in different states were estimated and interpreted using circular dichroism and fluorescence spectroscopic measurements. The enzyme was found to be structurally and functionally stable in the entire pH range and upto 50°C temperature. Further increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were irreversible, non-coincidental and sigmoidal. Free energy of protein unfolding (ΔG0) and unfolding constant (Kobs) were also calculated for chemically denatured CpGAL.

Significance

The protein seems to use different pathways for unfolding in different environments and is a classical example of how the environment dictates the path a protein might take to fold while its amino acid sequence only defines its final three-dimensional conformation. The knowledge accumulated could be of immense biotechnological significance as well.  相似文献   

19.
This study examined the effects of Sprint Interval Cycling (SIT) on muscle oxygenation kinetics and performance during the 30-15 intermittent fitness test (IFT). Twenty-five women hockey players of Olympic standard were randomly selected into an experimental group (EXP) and a control group (CON). The EXP group performed six additional SIT sessions over six weeks in addition to their normal training program. To explore the potential training-induced change, EXP subjects additionally completed 5 x 30s maximal intensity cycle testing before and after training. During these tests near-infrared spectroscopy (NIRS) measured parameters; oxyhaemoglobin + oxymyoglobin (HbO2+ MbO2), tissue deoxyhaemoglobin + deoxymyoglobin (HHb+HMb), total tissue haemoglobin (tHb) and tissue oxygenation (TSI %) were taken. In the EXP group (5.34±0.14 to 5.50±0.14m.s-1) but not the CON group (pre = 5.37±0.27 to 5.39±0.30m.s-1) significant changes were seen in the 30-15IFT performance. EXP group also displayed significant post-training increases during the sprint cycling: ΔTSI (−7.59±0.91 to −12.16±2.70%); ΔHHb+HMb (35.68±6.67 to 69.44±26.48μM.cm); and ΔHbO2+ MbO2 (−74.29±13.82 to −109.36±22.61μM.cm). No significant differences were seen in ΔtHb (−45.81±15.23 to −42.93±16.24). NIRS is able to detect positive peripheral muscle oxygenation changes when used during a SIT protocol which has been shown to be an effective training modality within elite athletes.  相似文献   

20.
Thermothrix thiopara did not appear to be stressed at high temperature (72°C). Both the actual and theoretical yields were higher than those of analogous mesophilic sulfur bacteria, and the specific growth rate (μmax) was more rapid than that of most autotrophs. The specific growth rate (0.58 h−1), specific maintenance rate (0.11 h−1), actual molar growth yield at μmax (Ymax = 16 g mol−1), and theoretical molar growth yield (YG = 24 g mol−1) were all higher for T. thiopara (72°C) than for mesophilic (25 to 30°C) Thiobacillus spp. The growth efficiencies for T. thiopara at 70 and 75°C (0.84 and 0.78) were significantly higher than at 65°C (0.47). Corresponding specific maintenance rates were highest at 65°C (0.41 h−1) and lowest at 70 and 75°C (0.11 and 0.15 h−1, respectively). Growth efficiencies of metabolically similar mesophiles were generally higher than for T. thiopara. However, the actual yields at μmax were higher for T. thiopara because its theoretical yield was higher. Thus, at 70°C, T. thiopara was capable of deriving more metabolically useful energy from thiosulfate than were mesophilic sulfur bacteria at 25 and 30°C. The low growth efficiency of T. thiopara reflected higher maintenance expenditures. T. thiopara had higher maintenance rates than Thiobacillus ferroxidans or Thiobacillus denitrificans, but also attained higher molar growth yields. It is concluded that sulfur metabolism may be more efficient overall at extremely high temperatures due to increased theoretical yields despite increased maintenance requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号