首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The effect of regucalcin, which is a regulatory protein of Ca(2+) signaling, on Ca(2+)-ATPase activity in isolated rat renal cortex mitochondria was investigated. The presence of regucalcin (50, 100, and 250 nM) in the enzyme reaction mixture led to a significant increase in Ca(2+)-ATPase activity. Regucalcin significantly stimulated ATP-dependent (45)Ca(2+) uptake by the mitochondria. Ruthenium red (10(-6) M) or lanthunum chloride (10(-6) M), an inhibitor of mitochondrial Ca(2+) uptake, markedly inhibited regucalcin (100 nM)-increased mitochondrial Ca(2+)-ATPase activity and (45)Ca(2+) uptake. The effect of regucalcin (100 nM) in elevating Ca(2+)-ATPase activity was completely prevented by the presence of digitonin (10(-2)%), a solubilizing reagent of membranous lipids, vanadate, an inhibitor of phosphorylation of ATPase, or dithiothreitol (50 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme. The activating effect of regucalcin (100 nM) on Ca(2+)-ATPase activity was not further enhanced by calmodulin (0.30 microM) or dibutyryl cyclic AMP (10(-4) M), which could increase Ca(2+)-ATPase activity. Trifluoperazine (TFP; 50 microM), an antagonist of calmodulin, significantly decreased Ca(2+)-ATPase activity. The activating effect of regucalcin on the enzyme was also seen in the presence of TFP, indicating that regucalcin's effect is not involved in mitochondrial calmodulin. The present study demonstrates that regucalcin can stimulate Ca(2+)-pump activity in rat renal cortex mitochondria, and that the protein may act on an active site (SH group) related to phosphorylation of mitochondrial Ca(2+)-ATPase.  相似文献   

2.
The effect of Ca(2+)-binding protein regucalcin on Ca(2+)-ATPase activity in isolated rat liver microsomes was investigated. The presence of regucalcin (0.1-1.0 microM) in the enzyme reaction mixture led to a significant increase in Ca(2+)-ATPase activity. Regucalcin significantly stimulated ATP-dependent (45)Ca(2+) uptake by the microsomes. Thapsigargin (10(-6) M), a specific inhibitor of microsomal Ca(2+) pump enzyme (Ca(2+)-ATPase), clearly inhibited regucalcin (0.5 microM)-increased microsomal Ca(2+)-ATPase activity. Liver microsomal Ca(2+)-ATPase activity was markedly decreased by N-ethylmaleimide (NEM; 2.5 mM), while the activity was clearly elevated by dithiothreitol (DTT; 2.5 mM), indicating that the sulfhydryl (SH) group of the enzyme is an active site. The effect of regucalcin (0.5 microM) in increasing Ca(2+)-ATPase activity was completely inhibited by the presence of NEM (2.5 mM) or digitonin (10(-2) %), a solubilizing reagent of membranous lipids. Moreover, the effect of regucalcin on enzyme activity was seen in the presence of Ca(2+) ionophore (A23187; 10(-7) M). The present study demonstrates that regucalcin can stimulate Ca(2+) pump activity in rat liver microsomes, and that the protein may act the SH groups of microsomal Ca(2+)-ATPase.  相似文献   

3.
4.
The role of regucalcin, which is a regulatory protein in intracellular signaling, in the regulation of Ca(2+)-ATPase activity in the mitochondria of brain tissues was investigated. The addition of regucalcin (10(-10) to 10(-8) M), which is a physiologic concentration in rat brain tissues, into the enzyme reaction mixture containing 25 microM calcium chloride caused a significant increase in Ca(2+)-ATPase activity, while it did not significantly change in Mg(2+)-ATPase activity. The effect of regucalcin (10(-9) M) in increasing mitochondrial Ca(2+)-ATPase activity was completely inhibited in the presence of ruthenium red (10(-7) M) or lanthanum chloride (10(-7) M), both of which are inhibitors of mitochondrial uniporter activity. Whether the effect of regucalcin is modulated in the presence of calmodulin or dibutyryl cyclic AMP (DcAMP) was examined. The effect of regucalcin (10(-9) M) in increasing Ca(2+)-ATPase activity was not significantly enhanced in the presence of calmodulin (2.5 microg/ml) which significantly increased the enzyme activity. DcAMP (10(-6) to 10(-4) M) did not have a significant effect on Ca(2+)-ATPase activity. The effect of regucalcin (10(-9) M) in increasing Ca(2+)-ATPase activity was not seen in the presence of DcAMP (10(-4) M). Regucalcin levels were significantly increased in the brain tissues or the mitochondria obtained from regucalcin transgenic (RC TG) rats. The mitochondrial Ca(2+)-ATPase activity was significantly increased in RC TG rats as compared with that of wild-type rats. This study demonstrates that regucalcin has a role in the regulation of Ca(2+)-ATPase activity in the brain mitochondria of rats.  相似文献   

5.
The role of endogenous regucalcin in the regulation of Ca(2+)-ATPase, a Ca(2+) sequestrating enzyme, in rat liver nuclei was investigated. Nuclear Ca(2+)-ATPase activity was significantly reduced by the addition of regucalcin (0.1-0.5 microM) into the enzyme reaction mixture. The presence of anti-regucalcin monoclonal antibody (25 or 50 ng/ml) caused a significant elevation of Ca(2+)-ATPase activity; this effect was completely abolished by the addition of regucalcin (0.1 microM). The effect of anti-regucalcin antibody (50 ng/ml) in increasing Ca(2+)-ATPase activity was completely prevented by the presence of thapsigargin (10(-6) M), an inhibitor of Ca(2+) sequestrating enzyme, N-ethylmaleimide (1 mM), a modifying reagent of thiol groups, or vanadate (10(-5) M), an inhibitor of phosphorylation of the enzyme by ATP, which revealed an inhibitory effect on nuclear Ca(2+)-ATPase activity. Meanwhile, the effect of anti-regucalcin antibody (50 ng/ml) was significantly enhanced by the addition of calmodulin (5 microg/ml), which could increase nuclear Ca(2+)-ATPase activity. In addition, the effect of antibody (50 ng/ml) was significantly reduced by the presence of trifluoperazine (20 microM), an antagonist of calmodulin. These results suggest that the endogenous regucalcin in liver nuclei has a suppressive effect on nuclear Ca(2+)-ATPase activity, and that regucalcin can inhibit an activating effect of calmodulin on the enzyme.  相似文献   

6.
The effect of regucalcin, which is a regulatory protein of Ca2+ signaling, on Ca2+‐ATPase activity in isolated rat renal cortex mitochondria was investigated. The presence of regucalcin (50, 100, and 250 nM) in the enzyme reaction mixture led to a significant increase in Ca2+‐ATPase activity. Regucalcin significantly stimulated ATP‐dependent 45Ca2+ uptake by the mitochondria. Ruthenium red (10−6 M) or lanthunum chloride (10−6 M), an inhibitor of mitochondrial Ca2+ uptake, markedly inhibited regucalcin (100 nM)‐increased mitochondrial Ca2+‐ATPase activity and 45Ca2+ uptake. The effect of regucalcin (100 nM) in elevating Ca2+‐ATPase activity was completely prevented by the presence of digitonin (10−2%), a solubilizing reagent of membranous lipids, vanadate, an inhibitor of phosphorylation of ATPase, or dithiothreitol (50 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme. The activating effect of regucalcin (100 nM) on Ca2+‐ATPase activity was not further enhanced by calmodulin (0.30 μM) or dibutyryl cyclic AMP (10−4 M), which could increase Ca2+‐ATPase activity. Trifluoperazine (TFP; 50 μM), an antagonist of calmodulin, significantly decreased Ca2+‐ATPase activity. The activating effect of regucalcin on the enzyme was also seen in the presence of TFP, indicating that regucalcin's effect is not involved in mitochondrial calmodulin. The present study demonstrates that regucalcin can stimulate Ca2+‐pump activity in rat renal cortex mitochondria, and that the protein may act on an active site (SH group) related to phosphorylation of mitochondrial Ca2+‐ATPase. J. Cell. Biochem. 80:285–292, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

7.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca2+-Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 \sgmaelig;M regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca2+-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

8.
The effect of regucalcin, a calcium-binding protein, on ATP-dependent Ca2+ transport in the basolateral membranes isolated from rat kidney cortex was investigated. The prepared membranes were in inside-out oriented and membrane vesicles. Ca2+-ATPase activity in the basolateral membranes was progressively elevated by increasing concentrations of regucalcin (10-8 to 10-6 M) in the reaction mixture. This increase was dependent on Ca2+ addition. The activatory effect of regucalcin on the enzyme is inhibited by the presence of digitonin (5 × 10-6%) which can solubilize the membranous lipids. Moreover, the regucalcin effect was clearly abolished by the presence of vanadate (0.1 mM) or N-ethylmaleimide (5.0 mM). However, the effect of calmodulin (6 × 10-7 M) to increase Ca2+-ATPase activity was not significantly inhibited by vanadate or N-ethylmaleimide, indicating that the action mode of regucalcin differs from that of calmodulin. Also, the activatory effect of regucalcin on Ca2+-ATPase was appreciably inhibited by addition of dibutyryl cAMP (10-5 and 10-3 M), while inositol 1,4,5-trisphosphate (10-7 and 10-5 M) had no effect. Dibutyryl cAMP itself did not have an effect on the enzyme activity. Furthermore, the 45Ca2+ uptake by the basolateral membranes was clearly increased by the presence of regucalcin (10-7 and 10-6 M). This increase was completely blocked by the presence of vanadate (0.1 mM), N-ethylmaleimide (5.0 mM) or dibutyryl cAMP (10-4 and 10-3 M) in the reaction mixture. These results clearly demonstrate that regucalcin, which is expressed in rat kidney cortex, can increase Ca2+-ATPase activity and Ca2+ uptake in the basolateral membranes. Regucalcin may play a cell physiologic role as an activator in the ATP-dependent Ca2+ pumps in the basolateral membranes from rat kidney cortex.  相似文献   

9.
Studies were made on the mechanism of the effect of parathyroid hormone (PTH) on the activity of (Ca2++Mg2+)-ATPase, a membrane bound Ca2+-extrusion pump enzyme from the basolateral membranes (BLM) of canine kidney (Km for free Ca2+ = 1.3 X 10(-7) M, Vmax = 200 nmol Pi/mg/min). At 1 X 10(-7) M free Ca2+, both PTH (10(-7)-10(-6) M) and cAMP (10(-6)-10(-4) M) stimulated (Ca2++Mg2+)-ATPase activity dose-dependent and their stimulatory effects were inhibited completely by 5 microM H-8, an inhibitor of cAMP-dependent protein kinase. PTH (10(-7) M) also caused 40% increase in 32P incorporation into the BLM and 5 microM H-8 inhibited this increase too. PTH (10(-7) M) was found to stimulate phosphorylation of a protein of Mr 9000 by cAMP dependent protein kinase and 5 microM H-8 was found to block this stimulation also. From these results, it is proposed that PTH stimulates (Ca2++Mg2+)-ATPase activity by enhancing its affinity for free Ca2+ via cAMP-dependent phosphorylation of a BLM protein of Mr 9000.  相似文献   

10.
The involvement of the mitochondrial permeability transition pore (PTP) in the responses of mitochondria from adjuvant-induced arthritic rats to Ca(2+) addition was investigated. The respiratory activity, the Ca(2+)-induced osmotic swelling and the electrophoretic (45)Ca(2+) uptake were evaluated in the absence and in the presence of cyclosporin A (CsA), a well-known inhibitor of the mitochondrial PTP. The Ca(2+)-induced mitochondrial permeability transition (MPT) process occurred in mitochondria from arthritic rats even in the presence of a low Ca(2+) concentration. Whereas in the normal condition, the Ca(2+)-induced uncoupling of oxidative phosphorylation and osmotic swelling was observed in the presence of 10 or 20 microM Ca(2+) concentration, in the arthritic condition, these events occurred at 1.0 microM concentration. In addition, mitochondria from arthritic rats presented an impaired ability to accumulate (45)Ca(2+). All these effects were completely prevented by the administration of CsA. The results of the present study suggest that the higher sensitivity of mitochondria from arthritic rats to Ca(2+)-induced MPT may be an important factor in the pathogenesis of the arthritis disease.  相似文献   

11.
The action of sodium nitroprusside, nitrite-anions and hydrogen peroxide on Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (Ca(2+)-independent) enzymatic activity in myometrium sarcolemma fraction is investigated. It is established, that 0.1 mM sodium nitroprusside and 10(-8)-10(-5) M nitrite-anions essentially reduce Ca2+, Mg(2+)-ATPase activity whereas Mg(2+)-ATPase proved to be absolutely resistant to them. At rather high concentration of nitrite-anions (0.1 mM) appreciable stimulation of Ca2+, Mg(2+)-ATPase was observed. Hydrogen peroxide (10(-8)-10(-4)), depending on the concentration suppressed both enzymes activity. However, Ca2+, Mg(2+)-ATPase proved to be more sensitive to the action of H2O2 (seeming K(i) = 0.42 +/- 0.1 microM), than Mg(2+)-ATPase (seeming K(i) = 3.1 +/- 0.9 microM). At presence of 1 mM ditiothreitole (a reducer of SH groups of the membrane surface) action of investigated substances considerably decreased. Reagents on carboxic- (dicyclogexilcarbodiimid) and amino- groups of the membrane (trinitrobenzolsulfonic acid) inhibited both Ca2+, Mg(2+)-ATPase, and Mg(2+)-ATPase activity in membrane fractions. In the presence of noted reagents sodium nitroprusside and nitrite-anions action was not almost shown. Hence, nitrogen oxide, nitrite-anions and hydrogen peroxide suppress Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (only hydrogen peroxide) activity in the plasmatic membrane of myometrium cells, and this action can be connected with direct updating of superficial chemical groups of the membrane.  相似文献   

12.
The regulatory role of regucalcin on protein phosphatase activity in isolated rat liver nuclei was investigated. Phosphatase activity toward phosphotyrosine and phosphoserine was significantly increased by the addition of CaCl(2) (10(-5) and 10(-4) M) in the enzyme reaction mixture. Trifluoperazine (25 and 50 microM), an antagonist of calmodulin, significantly inhibited protein phosphatase activity toward phosphoserine, while it had no effect on the enzyme activity toward phosphotysine and phosphothreonine. Cyclosporin A (10(-6)-10(-4) M), an inhibitor of Ca(2+)/calmodulin-dependent protein phosphatase activity toward phosphoserine, but not phosphotyrosine and phosphoserine. Thus, Ca(2+)/calmodulin-dependent phosphatases were present in liver nuclei. Regucalcin (0.25 and 0.5 microM) had an inhibitory effect on liver nuclear phosphatase activity toward phosphotyrosine, phosphoserine, and phosphothreonine. The presence of anti-regucalcin monoclonal antibody (25 and 50 ng/ml) in the enzyme reaction mixture caused a significant elevation of nuclear phosphatase activity toward three phosphoaminoacids. An analysis with sodium sulfate-polyacrylamide gel electrophoresis suggested a possibility of localization of regucalcin in liver nuclei. Moreover, regucalcin was determined in liver nuclei using enzyme-linked immunoadsorbent assay. The present study demonstrates that the endogenous regucalcin inhibits phosphatase activity in the liver nuclei.  相似文献   

13.
The data on hormonal regulation of ATP-driving ion pumps are contradictory depending on the object used: whether native cells or isolated membranes. To eliminate this contrariety, we studied the ion transporting ATPases in saponin-permeabilized cells in the presence of all endogenous regulators. In permeabilized erythrocytes we obtained the presence of Ca(2+)-dependent activation of Ca(2+)-ATPase by factor(s) not affected by calmodulin antagonist R24571. We obtained also Ca(2+)-dependent activation and inhibition of Na+,K(+)-ATPase. At a concentration of Mg(2+)-ions corresponding to the intracellular level (370 microM), the 0.5-0.7 microM Ca(2+)-activated Na+,K(+)-ATPase (up to 3-fold), whereas the 1-5 microM Ca2+ inhibited it. The cyclic AMP (10(-5) M) inhibited or eliminated Ca(2+)-dependent activation. The decrease in Mg(2+)-ion concentration to 50 microM eliminated the activation and strengthened the inhibition, which reached 100% at the 1-2 microM Ca2+ concentration. The washing of membranes with EGTA eliminated Ca2+ effects on Na+,K(+)-ATPase. These data suggest that the ion-transporting ATPases are activated or inhibited by Ca(2+)-dependent regulators whose activities may be changed by protein kinase catalysed phosphorylation.  相似文献   

14.
The suppressive role of endogenous regucalcin, which is a regulatory protein of calcium signaling, in the enhancement of nitric oxide (NO) synthase activity in the liver cytosol of rats was investigated. The enzyme activity was measured in a reaction mixture containing either vehicle or calcium chloride (1-20 microM) in the absence or presence of regucalcin (0.1, 0.25, or 0.5 microM). NO synthase activity was significantly increased by the addition of calcium (5-20 microM). This increase was completely abolished in the presence of trifluoperazine (TFP; 10-50 microM), an antagonist of Ca(2+)/calmodulin. The addition of regucalcin (0.1-0.5 microM) caused a significant fall in the calcium-increased enzyme activity. The effect of regucalcin (0.25 microM) in decreasing NO synthase activity was seen in the presence of ethylene glycol bis-(2-aminoethylether) N,N,N',N'-tetraacetic acid (EGTA, 1 mM) or TFP (20 microM), indicating that regucalcin acts independent on Ca(2+)/calmodulin. NO synthase activity was significantly raised in the presence of anti-regucalcin monoclonal antibody (10-50 ng/ml) in the reaction mixture. The effect of the antibody (50 ng/ml) or calcium (10 microM) in elevating NO synthase activity in the liver cytosol of normal rats was not seen in the liver cytosol obtained from regucalcin transgenic rats. Moreover, the increase in NO synthase activity in the liver cytosol of normal rats induced by a single intraperitoneal administration of calcium (5.0 mg/100 g body weight) was significantly enhanced in the presence of anti-regucalcin monoclonal antibody (50 ng/ml) in the reaction mixture. The administration of calcium caused a significant increase in regucalcin level in the liver cytosol of normal rats. The present study demonstrated that endogenous regucalcin plays a suppressive role in the enhancement of NO synthase activity in the liver cytosol of rats.  相似文献   

15.
The effect of hormonal signaling factors on (Ca2+–Mg2+)-ATPase activity in rat liver plasma membranes was investigated. The presence of inositol-glycan (10–7–10–5M), dibutyryl cAMP (10–4 and 10–3M) or inositol 1,4,5-trisphosphate (IP3; 10–6 and 10–5 M) in the enzyme reaction mixture produced a significant increase in (Ca2+–Mg2+)-ATPase activity. These effects were completely inhibited by the presence of vanadate (10–4 M), an inhibitor of the enzyme phosphorylation, and N-ethylmaleimide (5×10–3 M), a SH group modifying reagent. Meanwhile, regucalcin, a Ca2+-binding protein isolated from rat liver cytosol, increased the enzyme activity by binding to the SH groups of (Ca2+–Mg2+)-ATPase in liver plasma membranes. The presence of regucalcin (0.25 M) with an effective concentration completely inhibited the effect of inositol-glycan (10–5 M) to increase (Ca2+–Mg2+)-ATPase activity, while the effect of dibutyryl cAMP (10–3M) or IP3 (10–5M) was not altered. The inositol-glycan effect was not modulated by the presence of dibutyryl cAMP or IP3. Now, the preincubation of the plasma membranes with regucalcin did not modify the effect of inositol-glycan on the enzyme activity, suggesting that regucalcin competes with inositol-glycan for the binding to the plasma membranes. The present results suggest that there may be a cross talk with regucalcin and hormonal signaling factors in the regulation of (Ca2+–Mg2+)-ATPase activity in liver plasma membranes.  相似文献   

16.
The role of endogenous regucalcin in the regulation of deoxyribonucleic acid (DNA) synthesis activity in the nuclei of regenerating rat liver after partial hepatectomy was investigated. The addition of regucalcin (0.25 and 0.5 microM) in the reaction mixture caused a significant decrease in the nuclear DNA synthesis activity of normal rat liver. This decrease was also seen in the presence of Ca2+-chelator EGTA (0.4 mM), indicating that the effect of regucalcin is not related to nuclear Ca2+. Nuclear DNA activity was significantly increased in the presence of anti-regucalcin monoclonal antibody (10-50 ng/ml) in the reaction mixture. The effect was completely abolished by the addition of regucalcin (0.5 microM). Nuclear DNA synthesis activity was significantly increased at 24, 48, and 72 h after partial heptectomy. The effect of anti-regucalcin monoclonal antibody (25 ng/ml) in increasing nuclear DNA synthesis activity was significantly enhanced at 24 and 48 h after partial hepatectomy. The presence of staurospone (10(-6) M), trifluoperazine (2 x 10(-5) M), or PD98059 (10(-5) M) in the reaction mixture caused a significant decrease in DNA synthesis activity in the nuclei obtained at 24 after partial hepateactomy. The effect of these inhibitors in the presence of anti-regucalcin monoclonal antibody (25 ng/ml) was greater than that in the absence of the antibody. The present study suggests that endogenous regucalcin plays a suppressive role in the enhancement of nuclear DNA synthesis activity in regenerating liver with cell proliferation after partial hepatectomy in rats.  相似文献   

17.
The role of endogenous regucalcin in the regulation of ribonucleic acid (RNA) synthesis activity in the nucleus of normal and regenerating rat livers was investigated. Nuclear RNA synthesis was measured by the incorporation of [(3)H]-uridine 5'-triphosphate into the nuclear RNA in vitro. The presence of regucalcin (0.25 or 0.5 microM) in the reaction mixture caused a significant decrease in nuclear RNA synthesis of normal rat liver. alpha-Amanitin (10(-8)-10(-6) M), an inhibitor of RNA polymerase II and III, decreased significantly nuclear RNA synthesis activity. The effect of regucalcin (0.25 microM) in decreasing nuclear RNA synthesis activity was not seen in the presence of alpha-amanitin (10(-6) M). The calcium chloride (10 microM)-increased nuclear RNA synthesis activity was significantly suppressed by the addition of regucalcin (0.25 microM). RNA synthesis activity was significantly enhanced in the nuclei of regenating rat liver obtained at 24, 48, or 72 h after partial hepatectomy. This enhancement was significantly inhibited in the presence of PD98059 (10(-5) M), staurosporine (10(-6) M), or vanadate (10(-3) M). Western analysis of the nuclei of regenerating liver obtained at 24, 48, or 72 h after partial hepatectomy showed a significant increase in regucalcin protein as compared with that of sham-operated rats. The presence of anti-regucalcin monoclonal antibody (25 or 50 ng/ml) in the reaction mixture caused a significant increase in nuclear RNA synthesis activity of normal rat liver. This increase was completely blocked by the addition of regucalcin (1.0 microM). The effect of anti-regucalcin monoclonal antibody (50 ng/ml) in increasing nuclear RNA synthesis activity was significantly enhanced in the nuclei of regenerating liver obtained at 24, 48, or 72 h after partial hepatectomy. This enhancement was significantly suppressed by the addition of alpha-amanitin (10(-6) M), PD98059 (10(-5) M), staurosporine (10(-6) M), or vanadate (10(-3) M) in the reaction mixture. The present study demonstrates that endogenous regucalcin has a suppressive effect on the enhancement of RNA synthesis activity in the nucleus of regenerating rat liver with proliferative cells.  相似文献   

18.
The activating mechanism of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on (Ca2+–Mg2+)-ATPase in the plasma membranes of rat liver was investigated. (Ca2+–Mg2+)-ATPase activity was markedly increased by a sulfhydryl (SH) group protecting reagent dithiothreitol (DTT; 2.5 and 5 mM as a final concentration), while the enzyme activity was significantly decreased by a SH group modifying reagent N-ethylmaleimide (NEM; 0.5–5 mM). The effect of DTT (5 mM) to increase the enzyme activity was clearly blocked by NEM (5 mM). Regucalcin (0.25–1.0 M) significantly increased (Ca2+-Mg2+)-ATPase activity. This increase was completely blocked by NEM (5 mM). Meanwhile, digitonin (0.04%), which can solubilize the membranous lipids, significantly decreased (Ca2+–Mg2+)-ATPase activity. Digitonin did not have an effect on the DTT (5 mM)-increased enzyme activity. However, the effect of regucalcin (0.25 M) increasing (Ca2+–Mg2+)-ATPase activity was entirely blocked by the presence of digitonin. The present results suggest that regucalcin activates (Ca2+–Mg2+)-ATPase by the binding to liver plasma membrane lipids, and that the activation is involved in the SH groups which are an active site of the enzyme.  相似文献   

19.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on deoxyuridine 5′-triphosphatase (dUTPase) in the cytosol of rat liver was investigated. Addition of Ca2+ up to 5.0 μM to the enzyme reaction mixture caused a significant decrease of dUTPase activity, while Zn2+, Cd2+, Co2+, Al3+, Mn2+ and Ni2+ (10 μM) did not have an appreciable effect. The Ca2+-induced decrease of dUTPase activity was reversed by the presence of regucalcin; the effect was complete at 1.0 μM of the protein. Regucalcin had no effect on the basal activity of the enzyme. Meanwhile, the reversible effect of regucalcin on the Ca2+ (10 μM)-induced decrease of dUTPase activity was not altered by the coexistence of Cd2+ or Zn2+ (10 μM). The present data suggest that liver cytosolic dUTPase is uniquely regulated by Ca2+ of various metals, and that the Ca2+ effect is reversed by regucalcin.  相似文献   

20.
Calmodulin (CaM) and Ca(2+)/CaM-dependent protein kinase II (CaM kinase) are tightly associated with cardiac sarcoplasmic reticulum (SR) and are implicated in the regulation of transmembrane Ca(2+) cycling. In order to assess the importance of membrane-associated CaM in modulating the Ca(2+) pump (Ca(2+)-ATPase) function of SR, the present study investigated the effects of a synthetic, high affinity CaM-binding peptide (CaM BP; amino acid sequence, LKWKKLLKLLKKLLKLG) on the ATP-energized Ca(2+) uptake, Ca(2+)-stimulated ATP hydrolysis, and CaM kinase-mediated protein phosphorylation in rabbit cardiac SR vesicles. The results revealed a strong concentration-dependent inhibitory action of CaM BP on Ca(2+) uptake and Ca(2+)-ATPase activities of SR (50% inhibition at approximately 2-3 microM CaM BP). The inhibition, which followed the association of CaM BP with its SR target(s), was of rapid onset (manifested within 30 s) and was accompanied by a decrease in V(max) of Ca(2+) uptake, unaltered K(0.5) for Ca(2+) activation of Ca(2+) transport, and a 10-fold decrease in the apparent affinity of the Ca(2+)-ATPase for its substrate, ATP. Thus, the mechanism of inhibition involved alterations at the catalytic site but not the Ca(2+)-binding sites of the Ca(2+)-ATPase. Endogenous CaM kinase-mediated phosphorylation of Ca(2+)-ATPase, phospholamban, and ryanodine receptor-Ca(2+) release channel was also strongly inhibited by CaM BP. The inhibitory action of CaM BP on SR Ca(2+) pump function and protein phosphorylation was fully reversed by exogenous CaM (1-3 microM). A peptide inhibitor of CaM kinase markedly attenuated the ability of CaM to reverse CaM BP-mediated inhibition of Ca(2+) transport. These findings suggest a critical role for membrane-bound CaM in controlling the velocity of Ca(2+) pumping in native cardiac SR. Consistent with its ability to inhibit SR Ca(2+) pump function, CaM BP (1-2.5 microM) caused marked depression of contractility and diastolic dysfunction in isolated perfused, spontaneously beating rabbit heart preparations. Full or partial recovery of contractile function occurred gradually following withdrawal of CaM BP from the perfusate, presumably due to slow dissociation of CaM BP from its target sites promoted by endogenous cytosolic CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号