首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Diphtheria, tetanus, botulinum, and anthrax toxin are multipartate toxins, one of the domains of which is (or is presumed to be) an enzyme. Cell intoxication requires that the enzymatic portion gain access to the cytosol via endocytosis into an acidic vesicle compartment of the cell. Translocation of the enzyme across the vesicular membrane is dependent on the low pH of the vesicle and involves another domain of the toxin; for each of these toxins, that domain is capable of forming channels in phospholipid bilayer membranes. These channels are large (greater than 12 A diameter) and voltage-gated, and the pH conditions required for their formation in lipid bilayers are similar to those existing in acidic vesicles and required for cell intoxication.  相似文献   

2.
Trypsin digestion of pertussis toxin (PT) preferentially cleaved the S1 subunit at Arg-218 without detectable degradation of the B oligomer. The fragment produced, termed the tryptic S1 fragment, appears to remain associated with the B oligomer. Chymotrypsin digestion of PT also preferentially cleaved the S1 subunit without detectable degradation of the B oligomer. The chymotryptic S1 fragment possessed a slightly lower apparent molecular weight than the tryptic S1 fragment and was more accessible to the respective protease. Trypsin- and chymotrypsin-treated PT and PT required the presence of dithiothreitol and ATP for optimal enzymatic activity. Trypsin-treated PT showed approximately a 2-4-fold higher level of expression of ADP-ribosyltransferase and NAD-glycohydrolase activities than PT. Chymotrypsin-treated PT also exhibited approximately a 2-fold greater level of ADP-ribosyltransferase activity than PT. The observed increase in activity of protease-treated PT was due primarily to a shorter time for activation in PT mediated ADP-ribosylation of transducin. In addition, trypsin-digested PT possessed the same cytotoxic potential for Chinese hamster ovary cell clustering as PT. One possible role for the generation of a proteolytic fragment of the S1 subunit of PT would be to produce a catalytic fragment with increased efficiency for ADP-ribosylation of G proteins in vivo.  相似文献   

3.
During intoxication, the Cry protoxins must change from insoluble crystals into membrane-inserted toxins, which form ionic pores. Binding of Cry1A toxins to the cadherin receptor promotes the formation of a 250 kDa oligomer. In this work, we analyzed for the first time the structural changes presented by Cry1Ab toxin upon membrane insertion. Trp fluorescence of pure monomeric and oligomeric structures in solution and in a membrane-bound state was analyzed. Cry1Ab has nine Trp residues, seven of them in pore-forming domain I. Trp quenching analysis with iodide indicated that oligomerization caused a 27% reduction in the level of Trp exposed to the solvent. Most of the oligomeric structure (96%) inserts into the membrane as a function of the lipid:protein ratio, in contrast to the monomer (10%). Additionally, the membrane-associated oligomer presented a blue shift of 5 nm in lambda(max) of the emission spectrum, indicating a more hydrophobic environment for some Trp residues. In agreement with this, iodide was unable to quench the Trp of the membrane-bound oligomer, suggesting that a significant part of the protein may be buried in the membrane. Quenching analysis using brominated and spin-labeled phospholipids in the vesicles indicates that most of the Trp residues are located close to the membrane-water interface. Finally, ionic currents in black lipid bilayers revealed that the oligomeric structure has kinetics different from those of the monomer, producing stable channels with a high probability of being open in contrast to the monomer that exhibited unstable opening patterns. These data show that the oligomer, in contrast to the monomer, is able to interact efficiently with phospholipid membranes forming stable pores.  相似文献   

4.
The large clostridial cytotoxins toxin A and toxin B from Clostridium difficile are major virulence factors known to cause antibiotic-associated diarrhea and pseudomembranous colitis. Both toxins mono-glucosylate and thereby inactivate small GTPases of the Rho family. Recently, it was reported that toxin B, but not toxin A, induces pore formation in membranes of target cells under acidic conditions. Here, we reassessed data on pore formation of toxin A in cells derived from human colon carcinoma. Treatment of 86Rb+-loaded cells with native or recombinant toxin A resulted in an increased efflux of radioactive cations induced by an acidic pulse. The efficacy of pore formation was dependent on membrane cholesterol, since cholesterol depletion of membranes with methyl-beta-cyclodextrin inhibited 86Rb+ efflux, and cholesterol repletion reconstituted pore-forming activity of toxin A. Similar results were obtained with toxin B. Consistently, methyl-beta-cyclodextrin treatment delayed intoxication of cells in a concentration-dependent manner. In black lipid membranes, toxin A induced ion-permeable pores only in cholesterol containing bilayers and at low pH. In contrast, release of glycosylphosphatidylinositol-anchored structures by phosphatidylinositol specific phospholipase C treatment did not reduce cell sensitivity toward toxins A and B. These data indicate that in colonic cells toxin A induces pore formation in an acidic environment (e.g. endosomes) similar to that reported for toxin B and suggest that pore formation by clostridial glucosylating toxins depends on the presence of cholesterol.  相似文献   

5.
Adenylate cyclase (AC) toxins produced by Bacillus anthracis and Bordetella pertussis were compared for their ability to interact with and intoxicate Chinese hamster ovary cells. At 30 degrees C, anthrax AC toxin exhibited a lag of 10 min for measurable cAMP accumulation that was not seen with pertussis AC toxin. This finding is consistent with previous data showing inhibition of anthrax AC toxin but not pertussis AC toxin entry by inhibitors of receptor-mediated endocytosis (Gordon, V. M., Leppla, S. H., and Hewlett, E. L. (1988) Infect. Immun. 56, 1066-1069). Treatment of target Chinese hamster ovary cells with trypsin or cycloheximide reduced anthrax AC toxin-induced cAMP accumulation by greater than 90%, but was without effect on pertussis AC toxin. In contrast, incubation of the AC toxins with gangliosides prior to addition to target cells inhibited cAMP accumulation by pertussis AC toxin, but not anthrax AC toxin. To evaluate the role of lipids in the interaction of pertussis AC toxin with membranes, multicompartmental liposomes were loaded with a fluorescent marker and exposed to toxin. Pertussis AC toxin elicited marker release in a time- and concentration-dependent manner and required a minimal calcium concentration of 0.2 mM. These data demonstrate that the requirements for intoxication by the AC toxins from B. anthracis and B. pertussis are fundamentally different and provide a perspective for new approaches to study the entry processes.  相似文献   

6.
Recent experimental evidence indicates that Escherichia coli heat-labile enterotoxin and the closely related cholera toxin gain access to intracellular target substrates through a brefeldin A-sensitive pathway that may involve retrograde transport through the Golgiendoplasmic reticulum network. The A subunits of both toxins possess a carboxy-terminal tetrapeptide sequence (KDEL in cholera toxin and RDEL in the heat-labile enterotoxins) that is known to mediate the retention of eukaryotic proteins in the endoplasmic reticulum. To investigate the potential role of the RDEL sequence in the toxic activity of the heat-labile enterotoxin we constructed mutant analogues of the toxin containing single substitutions (RDGL and RDEV) or a reversed sequence (LEDR). The single substitutions had little effect on Chinese hamster ovary cell elongation or the ability to stimulate cAMP accumulation in Caco-2 cells. Reversal of the sequence reduced the ability of the toxin to increase cAMP levels in Caco-2 cells by approximately 60% and decreased the ability to elicit elongation of Chinese hamster ovary cells. The effects of the heat-labile enterotoxin were not diminished in a mutant Chinese hamster ovary cell line (V.24.1) that belongs to the End4 complementation group and possesses a temperature-sensitive block in secretion that correlates directly with the disappearance of the Golgi stacks. Collectively, these findings suggest that the brefeldin A-sensitive process involved in intoxication by the heat-labile enterotoxin does not involve RDEL-dependent retrograde transport of the A subunit through the Golgi-endoplasmic reticulum complex. The results are more consistent with a model of internalization involving translocation of the A subunit from an endosomal or a trans-Golgi network compartment.  相似文献   

7.
Pande AH  Moe D  Jamnadas M  Tatulian SA  Teter K 《Biochemistry》2006,45(46):13734-13740
Pertussis toxin (PT) is an AB-type protein toxin that consists of a catalytic A subunit (PT S1) and an oligomeric, cell-binding B subunit. It belongs to a subset of AB toxins that move from the cell surface to the endoplasmic reticulum (ER) before the A chain passes into the cytosol. Toxin translocation is thought to involve A chain unfolding in the ER and the quality control mechanism of ER-associated degradation (ERAD). The absence of lysine residues in PT S1 may allow the translocated toxin to avoid ubiquitin-dependent degradation by the 26S proteasome, which is the usual fate of exported ERAD substrates. As the conformation of PT S1 appears to play an important role in toxin translocation, we used biophysical and biochemical methods to examine the structural properties of PT S1. Our in vitro studies found that the isolated PT S1 subunit is a thermally unstable protein that can be degraded in a ubiquitin-independent fashion by the core 20S proteasome. The thermal denaturation of PT S1 was inhibited by its interaction with NAD, a donor molecule used by PT S1 for the ADP ribosylation of target G proteins. These observations support a model of intoxication in which toxin translocation, degradation, and activity are all influenced by the heat-labile nature of the isolated toxin A chain.  相似文献   

8.
Bacillus thuringiensis produces a variety of delta-endotoxins which bind to specific receptors in insect larval midguts. Following insertion into the membrane there is an alteration of ion flux culminating in osmotic lysis. Mutagenic oligonucleotides were used to define regions in one of these toxins involved in specificity and toxicity. One region is highly conserved among all toxins sequenced to date and many mutations resulted in loss of toxicity for three test Lepidoptera. The mutant toxins had lost the capacity to inhibit K(+)-dependent amino acid transport into larval midgut vesicles, but there was no effect on their ability to compete with wild type toxin for binding. The results are consistent with this amphiphilic helical region of the toxin being essential for toxicity. A second mutagenized region overlapped a portion of another potential amphiphilic helix. Mutations of only 2 residues, Ala-92 and Arg-93, resulted in loss of toxicity for two lepidopteran larvae but some activity remained for a third. The A92D mutant toxin competed with the wild type toxin for binding to vesicles prepared from midguts from the sensitive but not from the insensitive larvae. Decreased toxicity was also found when this mutation was transferred to two other related protoxin genes. A number of mutations of each of these residues was analyzed and selective loss of toxicity correlated with the absence of a positive charge. Despite being distal from the presumptive specificity domain, 1 or both of these residues must have an important role in the specific binding of toxins.  相似文献   

9.
In intact membranes as well as after reconstitution into phospholipid vesicles, pertussis toxin (PT)-mediated ADP-ribosylation of G proteins causes loss of receptor-mediated regulation of effectors and/or G protein-mediated regulation of receptor binding. Studies were carried out to test which of several discrete steps known to constitute the basal and receptor-stimulated regulatory cycles of Gi proteins are affected by PT. Experiments with the Gs-deficient Gi-regulated adenylyl cyclase of cyc- S49 cell membranes indicated that PT blocks Gi activation by GTP without affecting GDP dissociation or GTP binding to a major extent. This suggested that the block lies in the transition of inactive GTP-Gi to active GTP-Gi (G to G* transition). Experiments with purified Gi in solution and after incorporation into phospholipid vesicles showed that PT does not increase or decrease the intrinsic GTPase activity of Gi. Experiments in which Gi was incorporated into phospholipid vesicles with rhodopsin, a receptor that interacts with Gi to stimulate the rate of guanosine 5'-O-(3-thio)triphosphate binding and GTP hydrolysis, indicated that PT does not affect the basal GTPase activity of Gi, but blocks its activation by the photoreceptor. Taken together the results indicate that PT-mediated ADP ribosylation has two separate effects, one to block the interaction of receptor with Gi and another to impede the GTP-induced activation reaction from occurring, or that PT has only one effect, that of blocking interaction with receptors. In this latter case the present results add to a mounting series of data that are consistent with the hypothesis that unoccupied receptors are not inactive, but exhibit a basal agonist-independent activity responsible for the various effects of GTP observed on G protein-coupled effector functions in intact membranes.  相似文献   

10.
Translocation of preproteins across the Escherichia coli inner membrane requires acidic phospholipids. We have studied the translocation of the precursor protein proOmpA across inverted inner membrane vesicles prepared from cells depleted of phosphatidylglycerol and cardiolipin. These membranes support neither translocation nor the translocation ATPase activity of the SecA subunit of preprotein translocase. We now report that inner membrane vesicles which are depleted of acidic phospholipids are unable to bind SecA protein with high affinity. These membranes can be restored to translocation competence by fusion with liposomes containing phosphatidylglycerol, suggesting that the defect in SecA binding is a direct effect of phospholipid depletion rather than a general derangement of inner membrane structure. Reconstitution of SecY/E, the membrane-embedded domain of translocase, into proteoliposomes containing predominantly a single synthetic acidic lipid, dioleoylphosphatidylglycerol, allows efficient catalysis of preprotein translocation.  相似文献   

11.
The possible contribution of the mature portion of a mitochondrial precursor protein to its interaction with membrane lipids is unclear. To address this issue, we examined the interaction of the precursor to mitochondrial aspartate aminotransferase (pmAAT) and of a synthetic peptide corresponding to the 29-residue presequence peptide (mAAT-pp) with anionic phospholipid vesicles. The affinity of mAAT-pp and pmAAT for anionic vesicles is nearly identical. Results obtained by analyzing the effect of mAAT-pp or full-length pmAAT on either the permeability or microviscosity of the phospholipid vesicles are consistent with only a shallow insertion of the presequence peptide in the bilayer. Analysis of the quenching of Trp-17 fluorescence by brominated phospholipids reveals that this presequence residue inserts to a depth of approximately 9 A from the center of the bilayer. Furthermore, in membrane-bound pmAAT or mAAT-pp, both Arg-8 and Arg-28 are accessible to the solvent. These results suggest that the presequence segment lies close to the surface of the membrane and that the mature portion of the precursor protein has little effect on the affinity or mode of binding of the presequence to model membranes. In the presence of vesicles, mAAT-pp adopts considerable alpha-helical structure. Hydrolysis by trypsin after Arg-8 results in the dissociation of the remaining 21-residue C-terminal peptide fragment from the membrane bilayer, suggesting that the N-terminal portion of the presequence is essential for membrane binding. Based on these results, we propose that the presequence peptide may contain dual recognition elements for both the lipid and import receptor components of the mitochondrial membrane.  相似文献   

12.
The interaction of anthrax toxin protective antigen (PA) and target cells was assessed, and the importance of the cytosolic domain of tumor endothelium marker 8 (TEM8) in its function as a cellular receptor for PA was evaluated. PA binding and proteolytic processing on the Chinese hamster ovary cell surface occurred rapidly, with both processes nearly reaching steady state in 5 min. Remarkably, the resulting PA63 fragment was present on the cell surface only as an oligomer, and furthermore, the oligomer was the only PA species internalized, suggesting that oligomerization of PA63 triggers receptor-mediated endocytosis. Following internalization, the PA63 oligomer was rapidly and irreversibly transformed to an SDS/heat-resistant form, in a process requiring an acidic compartment. This conformational change was functionally correlated with membrane insertion, channel formation, and translocation of lethal factor into the cytosol. To explore the role of the TEM8 cytosolic tail, a series of truncated TEM8 mutants was transfected into a PA receptor-deficient Chinese hamster ovary cell line. Interestingly, all of the cytosolic tail truncated TEM8 mutants functioned as PA receptors, as determined by PA binding, processing, oligomer formation, and translocation of an lethal factor fusion toxin into the cytosol. Moreover, cells transfected with a TEM8 construct truncated before the predicted transmembrane domain failed to bind PA, demonstrating that residues 321-343 are needed for cell surface anchoring. Further evidence that the cytosolic domain plays no essential role in anthrax toxin action was obtained by showing that TEM8 anchored by a glycosylphosphatidylinositol tail also functioned as a PA receptor.  相似文献   

13.
AB toxins such as ricin and cholera toxin (CT) consist of an enzymatic A domain and a receptor-binding B domain. After endocytosis of the surface-bound toxin, both ricin and CT are transported by vesicle carriers to the endoplasmic reticulum (ER). The A subunit then dissociates from its holotoxin, unfolds, and crosses the ER membrane to reach its cytosolic target. Since protein unfolding at physiological temperature and neutral pH allows the dissociated A chain to attain a translocation-competent state for export to the cytosol, the underlying regulatory mechanisms of toxin unfolding are of paramount biological interest. Here we report a biophysical analysis of the effects of anionic phospholipid membranes and two chemical chaperones, 4-phenylbutyric acid (PBA) and glycerol, on the thermal stabilities and the toxic potencies of ricin toxin A chain (RTA) and CT A1 chain (CTA1). Phospholipid vesicles that mimic the ER membrane dramatically decreased the thermal stability of RTA but not CTA1. PBA and glycerol both inhibited the thermal disordering of RTA, but only glycerol could reverse the destabilizing effect of anionic phospholipids. In contrast, PBA was able to increase the thermal stability of CTA1 in the presence of anionic phospholipids. PBA inhibits cellular intoxication by CT but not ricin, which is explained by its ability to stabilize CTA1 and its inability to reverse the destabilizing effect of membranes on RTA. Our data highlight the toxin-specific intracellular events underlying ER-to-cytosol translocation of the toxin A chain and identify a potential means to supplement the long-term stabilization of toxin vaccines.  相似文献   

14.
Islet-activating protein (IAP), pertussis toxin, is a hexameric protein composed of an A protomer and a B oligomer, the residual pentamer having such a subunit assembly that two different dimers, dimer 1 and dimer 2, are connected with each other by means of the smallest C subunit. Incubation of IAP with formaldehyde and pyridine-borane produced the modified toxin in which most of the free amino groups were dimethylated. The methylated and nonmethylated (native) IAP were disintegrated into their respective constituent components, which were then cross combined to reconstitute hybrid toxins with the original hexameric structure. The binding of the B oligomer to the mammalian cell surface via dimer 2 was, but the binding via dimer 1 was not, seriously impaired by methylation of amino groups in the protein. The binding of the B oligomer allowed the A protomer to enter cells and to catalyze ADP-ribosylation of a membrane Mr 41 000 protein. The diverse biological activities of IAP occurring by this mechanism were mimicked by not only methylated IAP but also all hybrid toxins, indicating that the free amino groups in the protein were not essential for the enzyme activity of the A protomer and that the A protomer was able to enter cells if the B oligomer bound to cells "monovalently" via dimer 1. An additional effect of the B oligomer binding, i.e., the direct stimulation, without the transport of the A protomer, of cells leading to mitosis in lymphocytes in vitro or increases in circulating lymphocytes in vivo, was not mimicked by hybrid toxins containing methylated dimer 2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pertussis toxin (PT) comprises an active subunit (S1), which ADP-ribosylates the alpha subunit of several mammalian G proteins, and the B oligomer (S2–S5), which binds glycoconjugate receptors on cells. In a previous report, expression of S1 in Cos cells resulted in no observable cytotoxicity, and it was hypothesized that either S1 failed to locate its target proteins or the B oligomer was also necessary for cytotoxicity. To address this, we stably transfected S1 with and without a signal peptide into mammalian cells. Immunofluorescence analysis confirmed the function of the signal peptide. Surprisingly, we found that S1 was active in both transfectants, as determined by clustering of transfected Chinese hamster ovary (CHO) cells and ADP-ribosylation of G proteins. Constructs with a cysteine-to-serine change at residue 201 or a truncated S1 (residues 1–181) were also active when transfected into cells. Constructs with an inactive mutant S1 had no activity, confirming that the observed results were due to the activity of the toxin subunit. We conclude that S1 is active when expressed in mammalian cells without the B oligomer, that secretion into the endoplasmic reticulum does not prevent this activity and that the C-terminal portion of S1 is not required for its activity in cells.  相似文献   

16.
Clostridium botulinum C2 toxin is a binary toxin composed of an enzymatic subunit (C2I) capable of ADP-ribosylating actin and a binding subunit (C2II) that is responsible for interaction with receptors on eukaryotic cells. Here we show that binding of C2 toxin depends on the presence of asparagine-linked carbohydrates. A recently identified Chinese hamster ovary cell mutant (Fritz, G., Schroeder, P., and Aktories, K. (1995) Infect. Immun. 63, 2334-2340) was found to be deficient in N-acetylglucosaminyltransferase I. C2 sensitivity of this mutant was restored by transfection of an N-acetylglucosaminyltransferase I cDNA. C2 toxin sensitivity was reduced after inhibition of alpha-mannosidase II. In contrast, Chinese hamster ovary cell mutants deficient in sialylated (Lec2) or galactosylated (Lec8) glycoconjugates showed an increase in toxin sensitivity compared with wild-type cells. Our results show that the GlcNAc residue linked beta-1,2 to the alpha-1,3-mannose of the asparagine-linked core structure is essential for C2II binding to Chinese hamster ovary cells.  相似文献   

17.
Cry toxins form lytic pores in the insect midgut cells. The role of receptor interaction in the process of protoxin activation was analyzed. Incubation of Cry1Ab protoxin with a single chain antibody that mimics the cadherin-like receptor and treatment with Manduca sexta midgut juice or trypsin, resulted in toxin preparations with high pore-forming activity in vitro. This activity correlates with the formation of a 250 kDa oligomer that lacks the helix alpha-1 of domain I. The oligomer, in contrast with the 60 kDa monomer, was capable of membrane insertion as judged by 8-anilino-1-naphthalenesulfonate binding. Cry1Ab protoxin was also activated to a 250 kDa oligomer by incubation with brush border membrane vesicles, presumably by the action of a membrane-associated protease. Finally, a model where receptor binding allows the efficient cleavage of alpha-1 and formation of a pre-pore oligomeric structure that is efficient in pore formation, is presented.  相似文献   

18.
Crotoxin, isolated from the venom of Crotalus durissus terrificus, is a potent neurotoxin consisting of a basic and weakly toxic phospholipase A2 subunit (component B) and an acidic nonenzymatic subunit (component A). The nontoxic component A enhances the toxicity of the phospholipase subunit by preventing its nonspecific adsorption. The binding of crotoxin and of its subunits to small unilamellar phospholipid vesicles was examined under experimental conditions that prevented any phospholipid hydrolysis. Isolated component B rapidly bound with a low affinity (Kapp in the millimolar range) to zwitterionic phospholipid vesicles and with a high affinity (Kapp of less than 1 microM) to negatively charged phospholipid vesicles. On the other hand, the crotoxin complex did not interact with zwitterionic phospholipid vesicles but dissociated in the presence of negatively charged phospholipid vesicles; the noncatalytic component A was released into solution, whereas component B remained tightly bound to lipid vesicles, with apparent affinity constants from 100 to less than 1 microM, according to the chemical composition of the phospholipids. On binding, crotoxin or its component B caused the leakage of a dye entrapped in vesicles of negatively charged but not of zwitterionic phospholipids. The selective binding of crotoxin suggests that negatively charged phospholipids may constitute a component of the acceptor site of crotoxin on the presynaptic plasma membrane.  相似文献   

19.
The binary Clostridium botulinum C2 toxin consists of two individual proteins, the transport component C2II (80 kDa) and the enzyme component C2I, which ADP-ribosylates G-actin in the cytosol of cells. Trypsin-activated C2II (C2IIa) forms heptamers that bind to the cell receptor and mediate translocation of C2I from acidic endosomes into the cytosol of target cells. Here, we report that translocation of C2I across cell membranes is accompanied by pore formation of C2IIa. We used a radioactive rubidium release assay to detect C2IIa pores in the membranes of Chinese hamster ovary cells. Pore formation by C2IIa was dependent on the cellular C2 toxin receptor and an acidic pulse. Pores were formed when C2IIa was bound to cells at neutral pH and when cells were subsequently shifted to acidic medium (pH < 5.5), but no pores were detected when C2IIa was added to cells directly in acidic medium. Most likely, acidification induces a change from "pre-pore" to "pore" conformation of C2IIa, and formation of the pore conformation before membrane binding precludes insertion into membranes. When C2I was present during binding of C2IIa to cells prior to the acidification step, C2IIa-mediated rubidium release was decreased, suggesting that C2I interacted with the lumen of the C2IIa pore. A decrease of rubidium efflux was also detected when C2I was added to C2IIa-treated cells after the acidification step, suggesting that C2I interacted with C2IIa in its pore conformation. Moreover, C2I also interacted with C2IIa channels in artificial lipid membranes and blocked them partially. C2I was only translocated across the cell membrane when C2IIa plus C2I were bound to cells at neutral pH and subsequently shifted to acidic pH. When cell-bound C2IIa was exposed to acidic pH prior to C2I addition, only residual intoxication of cells was observed at high toxin concentrations, and binding of C2I to C2IIa was slightly decreased. Overall, C2IIa pores were essential but not sufficient for translocation of C2I. Intoxication of target cells with C2 toxin requires a strictly coordinated pH-dependent sequence of binding, pore formation by C2IIa, and translocation of C2I.  相似文献   

20.
Cholera toxin is a complex protein with a biologically active protein (A subunit) and a cell targeting portion (B subunit). The B subunit is responsible for specific cell binding and entry of the A subunit. One way to limit potential toxicity of the toxin after exposure is to introduce cellular decoys to bind the toxin before it can enter cells. In this study the ganglioside GM1, a natural ligand for cholera toxin, was incorporated into liposomes and the interaction between fluorescent B subunit and the liposome determined. Liposome membrane fluidity was determined to play a major role in the binding between liposomes and the cholera toxin B subunit. Liposomes with lower fluidity demonstrated greater binding with the B subunit. The findings from this study could have important implications on formulation strategies for liposome decoys of toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号