首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway.  相似文献   

2.
3.
TRAIL is a member of the tumor necrosis factor family that selectively induces cancer cell apoptosis. However, gastric cancer cells are insensitive to TRAIL. Our and others studies showed that the inhibition of EGFR pathway activation could increase the sensitivity of TRAIL in cancer cells. But the detailed mechanism is not fully understood. In the present study, compared with TRAIL or cetuximab (an anti-EGFR monoclonal antibody) alone, treatment with the TRAIL/cetuximab combination significantly promoted death receptor 4 (DR4) clustering as well as the translocation of both DR4 and Fas-associated death domain-containing protein (FADD) into lipid rafts. This in turn resulted in caspase-8 cleavage and the formation of the death-inducing signaling complex (DISC) in these lipid rafts. Cholesterol-depletion with methyl-β-cyclodextrin partially prevented DR4 clustering and DISC formation, and thus partially reversed apoptosis induced by the TRAIL/cetuximab dual treatment. These results indicate that cetuximab increases TRAIL-induced gastric cancer cell apoptosis at least partially through the promotion of DISC formation in lipid rafts.  相似文献   

4.
The proteasome inhibitors are a new class of antitumor agents. These inhibitors cause the accumulation of many proteins in the cell with the induction of apoptosis including TRAIL death receptors DR4 and DR5, but the role of the TRAIL apoptotic pathway in proteasome inhibitor cytotoxicity is unknown. Herein, we have demonstrated that the induction of apoptosis by the proteasome inhibitors, MG-132 and PS-341 (bortezomib, Velcade), in primary CLL cells and the Burkitt lymphoma cell line, BJAB, is associated with up-regulation of TRAIL and its death receptors, DR4 and DR5. In addition, FLICE-like inhibitory protein (c-FLIP) protein is decreased. MG-132 treatment increases binding of DR5 to the adaptor protein FADD, and causes caspase-8 activation and cleavage of pro-apoptotic BID. Moreover, DR4:Fc or blockage of DR4 and DR5 expression using RNA interference, which prevents TRAIL apoptotic signaling, blocks proteasome inhibitor induced apoptosis. MG-132 also increases apoptosis and DR5 expression in normal B-cells. However, when the proteasome inhibitors are combined with TRAIL or TRAIL receptor activating antibodies the amount of apoptosis is increased in CLL cells but not in normal B cells. Thus, activation of the TRAIL apoptotic pathway contributes to proteasome inhibitor induced apoptosis in CLL cells.  相似文献   

5.
6.
7.
8.
Chemotherapeutic genotoxins induce apoptosis in epithelial-cell-derived cancer cells. The death receptor ligand TRAIL also induces apoptosis in epithelial-cell-derived cancer cells but generally fails to induce apoptosis in nontransformed cells. We show here that the treatment of four different epithelial cell lines with the topoisomerase II inhibitor etoposide in combination with TRAIL (tumor necrosis factor [TNF]-related apoptosis-inducing ligand) induces a synergistic apoptotic response. The mechanism of the synergistic effect results from the etoposide-mediated increase in the expression of the death receptors 4 (DR4) and 5 (DR5). Inhibition of NF-kappaB activation by expression of kinase-inactive MEK kinase 1(MEKK1) or dominant-negative IkappaB (DeltaIkappaB) blocked the increase in DR4 and DR5 expression following etoposide treatment. Addition of a soluble decoy DR4 fusion protein (DR4:Fc) to cell cultures reduced the amount of etoposide-induced apoptosis in a dose-dependent manner. The addition of a soluble TNF decoy receptor (TNFR:Fc) was without effect, demonstrating the specificity of DR4 binding ligands in the etoposide-induced apoptosis response. Thus, genotoxin treatment in combination with TRAIL is an effective inducer of epithelial-cell-derived tumor cell apoptosis relative to either treatment alone.  相似文献   

9.
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) mediates apoptosis in cancer cells through death receptors DR4 and DR5 preferring often one receptor over another in the cells expressing both receptors. Receptor selective mutant variants of TRAIL and agonistic antibodies against DR4 and DR5 are highly promising anticancer agents. Here using DR5 specific mutant variant of TRAIL - DR5-B we have demonstrated for the first time that the sensitivity of cancer cells can be shifted from one TRAIL death receptor to another during co-treatment with anticancer drugs. First we have studied the contribution of DR4 and DR5 in HCT116 p53+/+ and HCT116 p53−/− cells and demonstrated that in HCT116 p53+/+ cells the both death receptors are involved in TRAIL-induced cell death while in HCT116 p53−/− cells prevailed DR4 signaling. The expression of death (DR4 and DR5) as well as decoy (DcR1 and DcR2) receptors was upregulated in the both cell lines either by TRAIL or by bortezomib. However, combined treatment of cells with two drugs induced strong time-dependent and p53-independent internalization and further lysosomal degradation of DR4 receptor. Interestingly DR5-B variant of TRAIL which do not bind with DR4 receptor also induced elimination of DR4 from cell surface in combination with bortezomib indicating the ligand-independent mechanism of the receptor internalization. Eliminatory internalization of DR4 resulted in activation of DR5 receptor thus DR4-dependent HCT116 p53−/− cells became highly sensitive to DR5-B in time-dependent manner. Internalization and degradation of DR4 receptor depended on activation of caspases as well as of lysosomal activity as it was completely inhibited by Z-VAD-FMK, E-64 and Baf-A1. In light of our findings, it is important to explore carefully which of the death receptors is active, when sensitizing drugs are combined with agonistic antibodies to the death receptors or receptor selective variants of TRAIL to enhance cancer treatment efficiency.  相似文献   

10.
Apoptosis-inducing ligand 2 (Apo2L), also called tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), triggers programmed cell death in various types of cancer cells but not in most normal cells. Apo2L/TRAIL is a homotrimeric protein that interacts with five receptors: death receptor 4 (DR4) and DR5 mediate apoptosis activation, whereas decoy receptor 1 (DcR1), DcR2, and osteoprotegerin counteract this function. Many cancer cell lines express both DR4 and DR5, and each of these receptors can initiate apoptosis independently of the other. However, the relative contribution of DR4 and DR5 to ligand-induced apoptosis is unknown. To investigate this question, we generated death receptor-selective Apo2L/TRAIL variants using a novel approach that enables phage display of mutated trimeric proteins. Selective binding to DR4 or DR5 was achieved with three to six-ligand amino acid substitutions. The DR4-selective Apo2L/TRAIL variants examined in this study showed a markedly reduced ability to trigger apoptosis, whereas the DR5-selective variants had minimally decreased or slightly increased apoptosis-inducing activity. These results suggest that DR5 may contribute more than DR4 to Apo2L/TRAIL-induced apoptosis in cancer cells that express both death receptors.  相似文献   

11.
Zhang HG  Xie J  Xu L  Yang P  Xu X  Sun S  Wang Y  Curiel DT  Hsu HC  Mountz JD 《Journal of virology》2002,76(11):5692-5700
A major limitation of adenovirus (Ad) gene therapy product expression in the liver is subsequent elimination of the hepatocytes expressing the gene therapy product. This elimination is caused by both necrosis and apoptosis related to the innate and cell-mediated immune response to the Ad. Apoptosis of hepatocytes can be induced by the innate immune response by signaling through death domain receptors on hepatocytes including the tumor necrosis factor alpha (TNF-alpha) receptor (TNFR), Fas, and death domain receptors DR4 and DR5. We have previously shown that blocking signaling through TNFR enhances and prolongs gene therapy product expression in the liver. In the present study, we constructed an Ad that produces a soluble DR5-Fc (AdsDR5), which is capable of neutralizing TNF-related apoptosis-inducing ligand (TRAIL). AdsDR5 prevents TRAIL-mediated apoptosis of CD3-activated T cells and decreases hepatocyte apoptosis after AdCMVLacZ administration and enhances the level and duration of lacZ transgene expression in the liver. In addition to blocking TRAIL and directly inhibiting apoptosis, AdsDR5 decreases production of gamma interferon (IFN-gamma) and TNF-alpha and decreases NK cell activation, all of which limit Ad-mediated transgene expression in the liver. These results indicate that (i) AdsDR5 produces a DR5-Fc capable of neutralizing TRAIL, (ii) AdsDR5 can reduce activation of NK cells and reduce induction of IFN-gamma and TNF-alpha after Ad administration, and (iii) administration of AdsDR5 can enhance Ad gene therapy in the liver.  相似文献   

12.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising candidates for cancer therapeutics. However, some tumor cells are resistant to TRAIL-induced apoptosis. Our previous studies have shown that luteolin, a naturally occurring flavonoid, induces the up-regulation of death receptor 5 (DR5), which is a receptor for TRAIL. Here, we show for the first time that luteolin synergistically acts with exogenous soluble recombinant human TRAIL to induce apoptosis in HeLa cells, but not in normal human peripheral blood mononuclear cells. The combined use of luteolin and TRAIL induced Bid cleavage and the activation of caspase-8. Also, human recombinant DR5/Fc chimera protein, caspase inhibitors, and DR5 siRNA efficiently reduced apoptosis induced by co-treatment with luteolin and TRAIL. These results raise the possibility that this combined treatment with luteolin and TRAIL might be promising as a new therapy against cancer.  相似文献   

13.
14.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors.  相似文献   

15.
TRAIL (tumor necrosis factor (TNF) related apoptosis-inducing ligand) has been introduced as an extrinsic pathway inducer of apoptosis that does not have the toxicities of Fas and TNF. However, the therapeutic potential of TRAIL is limited because of many primary tumor cells are resistant to TRAIL. Despite intensive investigations, little is known in regards to the mechanisms underlying TRAIL selectivity and efficiency. A major reason likely lies in the complexity of the interaction of TRAIL with its five receptors, of which only two DR4 and DR5 are death receptors. Binding of TRAIL with decoy receptors DcR1 and DcR2 or soluble receptor osteoprotegerin (OPG) fail to induce apoptosis. Here we describe design and expression in Escherichia coli of DR5-selective TRAIL variants DR5-A and DR5-B. The measurements of dissociation constants of these mutants with all five receptors show that they practically do not interact with DR4 and DcR1 and have highly reduced affinity to DcR2 and OPG receptors. These mutants are more effective than wild type TRAIL in induction of apoptosis in different cancer cell lines. In combination with the drugs targeted to cytoskeleton (taxol, cytochalasin D) the mutants of TRAIL induced apoptosis in resistant Hela cells overexpressing Bcl-2. The novel highly selective and effective DR5-A and DR5-B TRAIL variants will be useful in studies on the role of different receptors in TRAIL-induced apoptosis in sensitive and resistant cell lines. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Approximately 25% of patients with colorectal cancer will develop metastatic disease exclusively or largely confined to the liver, and the vast majority of these cases are not amenable to surgical resection. These unresectable cases of liver metastatic disease can be treated with isolated hepatic perfusion (IHP), which involves a method of complete vascular isolation of the liver to allow treatment of liver tumors with toxic systemic doses of chemotherapeutic agents. To improve the efficacy of IHP, hyperthermia and biological agents have been applied along with the chemotherapeutic agents. In this study, we investigated whether hyperthermia in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) enhances mortality in human colorectal carcinoma CX-1 cells. Cells were treated with various concentrations of TRAIL (0-200 ng/ml) at various temperatures (40-46 degrees C) for 1 h and further incubated at 37 degrees C in the presence of TRAIL. We observed that hyperthermia at 42-43 degrees C effectively promoted TRAIL-induced apoptosis, as indicated by cell death, poly (ADP-ribose) polymerase (PARP) cleavage, and activation of caspase-8, -9, and -3. In contrast, hyperthermia at 45-46 degrees C suppressed TRAIL-induced apoptosis. We also observed that mild hyperthermia, but not acute hyperthermia, promoted cytochrome c release during treatment with TRAIL. Our data suggest that promotion of cytochrome c release during mild hyperthermia is responsible for the enhancement of TRAIL cytotoxicity.  相似文献   

17.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell-specific apoptosis-inducing cytokine with little toxicity to most normal cells. Here, we report that gefitinib and TRAIL in combination produce a potent synergistic effect on TRAIL-sensitive human colon cancer HCT116 cells and an additive effect on TRAIL-resistant HT-29 cells. Interestingly, gefitinib increases the expression of cell surface receptors DR4 and DR5, possibly explaining the synergistic effect. Knockdown of DR4 and DR5 by siRNA significantly decreases gefitinib- and TRAIL-mediated cell apoptosis, supporting this idea. Because the inhibition of gefitinib-induced autophagy by 3-MA significantly decreases DR4 and DR5 upregulation, as well as reduces gefitinib- and TRAIL-induced apoptosis, we conclude that death receptor upregulation is autophagy mediated. Furthermore, our results indicate that death receptor expression may also be regulated by JNK activation, because pre-treatment of cells with JNK inhibitor SP600125 significantly decreases gefitinib-induced death receptor upregulation. Interestingly, SP600125 also inhibits the expression CHOP, yet CHOP has no impact on death receptor expressions. We also find here that phosphorylation of Akt and ERK might also be required for TRAIL sensitization. In summary, our results indicate that gefitinib effectively enhances TRAIL-induced apoptosis, likely via autophagy and JNK- mediated death receptor expression and phosphorylation of Akt and ERK.  相似文献   

18.
Bile acids induce hepatocyte injury by enhancing death receptor-mediated apoptosis. In this study, bile acid effects on TRAIL-mediated apoptosis were examined to gain insight into bile acid potentiation of death receptor signaling. TRAIL-induced apoptosis of HuH-7 cells, stably transfected with a bile acid transporter, was enhanced by bile acids. Caspase 8 and 10 activation, bid cleavage, cytosolic cytochrome c, and caspase 3 activation by TRAIL were all increased by the bile acid glycochenodeoxycholate (GCDCA). GCDCA (100 microm) did not alter expression of TRAIL-R1/DR4, TRAIL-R2/DR5, procaspase 8, cFLIP-L, cFLIP-s, Bax, Bcl-xL, or Bax. However, both caspase 8 and caspase 10 recruitment and processing within the TRAIL death-inducing signaling complex (DISC) were greater in GCDCA-treated cells whereas recruitment of cFLIP long and short was reduced. GCDCA stimulated phosphorylation of both cFLIP isoforms, which was associated with decreased binding to GST-FADD. The protein kinase C antagonist chelerythrine prevented bile acid-stimulated cFLIP-L and -s phosphorylation, restored cFLIP binding to GST-FADD, and attenuated bile acid potentiation of TRAIL-induced apoptosis. These results provide new insights into the mechanisms of bile acid cytotoxicity and the proapoptotic effects of cFLIP phosphorylation in TRAIL signaling.  相似文献   

19.
20.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential anticancer agent that selectively induces apoptosis in a variety of cancer cells by interacting with death receptors DR4 and DR5. TRAIL can also bind to decoy receptors (DcR1, DcR2, and osteoprotegerin receptor) that cannot induce apoptosis. Different tumor types respond either to DR4 or to DR5 activation, and chemotherapeutic drugs can increase the expression of DR4 or DR5 in cancer cells. Thus, DR4 or DR5 receptor-specific TRAIL variants would permit new and tumor-selective therapies. Previous success in generating a DR5-selective TRAIL mutant using computer-assisted protein design prompted us to make a DR4-selective TRAIL variant. Technically, the design of DR4 receptor-selective TRAIL variants is considerably more challenging compared with DR5 receptor-selective variants, because of the lack of a crystal structure of the TRAIL-DR4 complex. A single amino acid substitution of Asp at residue position 218 of TRAIL to His or Tyr was predicted to have a favorable effect on DR4 binding specificity. Surface plasmon resonance-based receptor binding tests showed a lowered DR5 affinity in concert with increased DR4 specificity for the designed variants, D218H and D218Y. Binding to DcR1, DcR2, and osteoprotegerin was also decreased. Cell line assays confirmed that the variants could not induce apoptosis in DR5-responsive Jurkat and A2780 cells but were able to induce apoptosis in DR4-responsive EM-2 and ML-1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号