首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
When new advantageous alleles arise and spread within a population, deleterious alleles at neighboring loci can hitchhike alongside them and spread to fixation in areas of low recombination, introducing a fixed mutation load. We use branching processes and diffusion equations to calculate the probability that a deleterious allele hitchhikes and fixes alongside an advantageous mutant. As expected, the probability of fixation of a deleterious hitchhiker rises with the selective advantage of the sweeping allele and declines with the selective disadvantage of the deleterious hitchhiker. We then use computer simulations of a genome with an infinite number of loci to investigate the increase in load after an advantageous mutant is introduced. We show that the appearance of advantageous alleles on genetic backgrounds loaded with deleterious alleles has two potential effects: it can fix deleterious alleles, and it can facilitate the persistence of recombinant lineages that happen to occur. The latter is expected to reduce the signals of selection in the surrounding region. We consider these results in light of human genetic data to infer how likely it is that such deleterious hitchhikers have occurred in our recent evolutionary past.  相似文献   

2.
Probability of fixation of an advantageous mutant in a viral quasispecies   总被引:7,自引:0,他引:7  
Wilke CO 《Genetics》2003,163(2):467-474
The probability that an advantageous mutant rises to fixation in a viral quasispecies is investigated in the framework of multitype branching processes. Whether fixation is possible depends on the overall growth rate of the quasispecies that will form if invasion is successful rather than on the individual fitness of the invading mutant. The exact fixation probability can be calculated only if the fitnesses of all potential members of the invading quasispecies are known. Quasispecies fixation has two important characteristics: First, a sequence with negative selection coefficient has a positive fixation probability as long as it has the potential to grow into a quasispecies with an overall growth rate that exceeds that of the established quasispecies. Second, the fixation probabilities of sequences with identical fitnesses can nevertheless vary over many orders of magnitudes. Two approximations for the probability of fixation are introduced. Both approximations require only partial knowledge about the potential members of the invading quasispecies. The performance of these two approximations is compared to the exact fixation probability on a network of RNA sequences with identical secondary structure.  相似文献   

3.
Evolutionary graph theory studies the evolutionary dynamics of populations structured on graphs. A central problem is determining the probability that a small number of mutants overtake a population. Currently, Monte Carlo simulations are used for estimating such fixation probabilities on general directed graphs, since no good analytical methods exist. In this paper, we introduce a novel deterministic framework for computing fixation probabilities for strongly connected, directed, weighted evolutionary graphs under neutral drift. We show how this framework can also be used to calculate the expected number of mutants at a given time step (even if we relax the assumption that the graph is strongly connected), how it can extend to other related models (e.g. voter model), how our framework can provide non-trivial bounds for fixation probability in the case of an advantageous mutant, and how it can be used to find a non-trivial lower bound on the mean time to fixation. We provide various experimental results determining fixation probabilities and expected number of mutants on different graphs. Among these, we show that our method consistently outperforms Monte Carlo simulations in speed by several orders of magnitude. Finally we show how our approach can provide insight into synaptic competition in neurology.  相似文献   

4.
Cherry JL 《Genetics》2003,164(2):789-795
In a subdivided population, local extinction and subsequent recolonization affect the fate of alleles. Of particular interest is the interaction of this force with natural selection. The effect of selection can be weakened by this additional source of stochastic change in allele frequency. The behavior of a selected allele in such a population is shown to be equivalent to that of an allele with a different selection coefficient in an unstructured population with a different size. This equivalence allows use of established results for panmictic populations to predict such quantities as fixation probabilities and mean times to fixation. The magnitude of the quantity N(e)s(e), which determines fixation probability, is decreased by extinction and recolonization. Thus deleterious alleles are more likely to fix, and advantageous alleles less likely to do so, in the presence of extinction and recolonization. Computer simulations confirm that the theoretical predictions of both fixation probabilities and mean times to fixation are good approximations.  相似文献   

5.
Effective population size is a key parameter in population ecology because it allows prediction of the dynamics of genetic variation and the rate of genetic drift and inbreeding. It is important for the definition of "nearly neutral" mutations and, hence, has consequences for the fixation or extinction probabilities of advantageous and deleterious mutations. As graph-based population models become increasingly popular for studying evolution in spatially or socially structured populations, a neutral theory for evolution on graphs is called for. Here, we derive formulae for two alternative measures of effective population size, the variance effective and inbreeding effective size of general unweighted and undirected graphs. We show how these two quantities relate to each other and we derive effective sizes for the complete graph the cycle and bipartite graphs. For one-dimensional lattices and small-world graphs, we estimate the inbreeding effective size using simulations. The presented method is suitable for any structured population of haploid individuals with overlapping generations.  相似文献   

6.
Engelstädter J  Hurst GD 《Genetics》2007,175(1):245-254
Male-killing bacteria are maternally inherited endosymbionts that selectively kill male offspring of their arthropod hosts. Using both analytical techniques and computer simulations, we studied the impact of these bacteria on the population genetics of their hosts. In particular, we derived and corroborated formulas for the fixation probability of mutant alleles, mean times to fixation and fixation or extinction, and heterozygosity for varying male-killer prevalence. Our results demonstrate that infections with male-killing bacteria impede the spread of beneficial alleles, facilitate the spread of deleterious alleles, and reduce genetic variation. The reason for this lies in the strongly reduced fitness of infected females combined with no or very limited gene flow from infected females to uninfected individuals. These two properties of male-killer-infected populations reduce the population size relevant for the initial emergence and spread of mutations. In contrast, use of Wright's equation relating sex ratio to effective population size produces misleading predictions. We discuss the relationship to the similar effect of background selection, the impact of other sex-ratio-distorting endosymbionts, and how our results affect the interpretation of empirical data on genetic variation in male-killer-infected populations.  相似文献   

7.
We have used diffusion and branching process methods to investigate fixation rates, probabilities of survival per generation, and times to fixation of mutant genes under different selection methods incorporating individual and family information. Diffusion approximations fit well to simulated results even for large selection coefficients. Methods that give much weight to family information, such as BLUP evaluation which is widely used in animal breeding, reduce fixation rates of mutant genes because of the reduced effective population sizes. In general, it is observed that even mutants with relatively small heterozygous effects (say 0.1 phenotypic standard deviation) are practically ‘safe’ (i.e. their probability of loss from one generation to the next is smaller than, say, 10%) after just a few generations, typically less than 10. For methods of selection with larger effective size, such as within-family selection, the mutant is ‘safe’ in the population somewhat earlier but eventual fixation takes a longer time. Finally we evaluate the amount by which the use of marker assisted selection reduces the fixation probability of newly arisen mutants.  相似文献   

8.
The deterministic properties of a two-locus model with mutation and selection have been investigated. The mutation process is unidirectional, and the model is so constructed that the genetic variation at one locus is selectively neutral in the absence of a mutant allele at the other locus. All genotypes with three or four mutant alleles are deleterious, while the double heterozygotes may have the same fitness as the standard genotype. If one of the mutant alleles becomes fixed in the population, then the other locus will show a regular one-locus mutation-selection balance. Such a boundary equilibrium may be unstable or stable in the full two-locus setting. In the symmetric case, which is analyzed in details, the population will either go to one of the two boundary equilibria, or to a fully polymorphic equilibrium at which both the mutant alleles are rare. The origin of reproductive separation between two populations via the fixation of complementary deleterious mutants at different loci, and the fixation of nonfunctional alleles at duplicated loci, are two biological processes which both can be studied with the present model. In the last part of the paper we show how the results from the deterministic analysis can be used to predict how different factors will influence the rates of evolution in these systems.  相似文献   

9.
Although mutations drive the evolutionary process, the rates at which the mutations occur are themselves subject to evolutionary forces. Our purpose here is to understand the role of selection and random genetic drift in the evolution of mutation rates, and we address this question in asexual populations at mutation‐selection equilibrium neglecting selective sweeps. Using a multitype branching process, we calculate the fixation probability of a rare nonmutator in a large asexual population of mutators and find that a nonmutator is more likely to fix when the deleterious mutation rate of the mutator population is high. Compensatory mutations in the mutator population are found to decrease the fixation probability of a nonmutator when the selection coefficient is large. But, surprisingly, the fixation probability changes nonmonotonically with increasing compensatory mutation rate when the selection is mild. Using these results for the fixation probability and a drift‐barrier argument, we find a novel relationship between the mutation rates and the population size. We also discuss the time to fix the nonmutator in an adapted population of asexual mutators, and compare our results with experiments.  相似文献   

10.
We study the genetic basis of adaptation in a moving optimum model, in which the optimal value for a quantitative trait increases over time at a constant rate. We first analyze a one-locus two-allele model with recurrent mutation, for which we derive accurate analytical approximations for (i) the time at which a previously deleterious allele becomes beneficial, (ii) the waiting time for a successful new mutation, and (iii) the time the mutant allele needs to reach fixation. On the basis of these results, we show that the shortest total time to fixation is for alleles with intermediate phenotypic effect. We derive an approximation for this “optimal” effect, and we show that it depends in a simple way on a composite parameter, which integrates the ecological parameters and the genetic architecture of the trait. In a second step, we use stochastic computer simulations of a multilocus model to study the order in which mutant alleles with different effects go to fixation. In agreement with the one-locus results, alleles with intermediate effect tend to become fixed earlier than those with either small or large effects. However, the effect size of the fastest mutations differs from the one predicted in the one-locus model. We show how these differences can be explained by two specific effects of multilocus genetics. Finally, we discuss our results in the light of three relevant timescales acting in the system—the environmental, mutation, and fixation timescales—which define three parameter regimes leading to qualitative differences in the adaptive substitution pattern.  相似文献   

11.
Haldane's sieve and adaptation from the standing genetic variation   总被引:8,自引:0,他引:8  
Orr HA  Betancourt AJ 《Genetics》2001,157(2):875-884
We consider populations that adapt to a sudden environmental change by fixing alleles found at mutation-selection balance. In particular, we calculate probabilities of fixation for previously deleterious alleles, ignoring the input of new mutations. We find that "Haldane's sieve"--the bias against the establishment of recessive beneficial mutations--does not hold under these conditions. Instead probabilities of fixation are generally independent of dominance. We show that this result is robust to patterns of sex expression for both X-linked and autosomal loci. We further show that adaptive evolution is invariably slower at X-linked than autosomal loci when evolution begins from mutation-selection balance. This result differs from that obtained when adaptation uses new mutations, a finding that may have some bearing on recent attempts to distinguish between hitchhiking and background selection by contrasting the molecular population genetics of X-linked vs. autosomal loci. Last, we suggest a test to determine whether adaptation used new mutations or previously deleterious alleles from the standing genetic variation.  相似文献   

12.
Cherry JL 《Genetics》2004,166(2):1105-1114
In a subdivided population, the interaction between natural selection and stochastic change in allele frequency is affected by the occurrence of local extinction and subsequent recolonization. The relative importance of selection can be diminished by this additional source of stochastic change in allele frequency. Results are presented for subdivided populations with extinction and recolonization where there is more than one founding allele after extinction, where these may tend to come from the same source deme, where the number of founding alleles is variable or the founders make unequal contributions, and where there is dominance for fitness or local frequency dependence. The behavior of a selected allele in a subdivided population is in all these situations approximately the same as that of an allele with different selection parameters in an unstructured population with a different size. The magnitude of the quantity N(e)s(e), which determines fixation probability in the case of genic selection, is always decreased by extinction and recolonization, so that deleterious alleles are more likely to fix and advantageous alleles less likely to do so. The importance of dominance or frequency dependence is also altered by extinction and recolonization. Computer simulations confirm that the theoretical predictions of both fixation probabilities and mean times to fixation are good approximations.  相似文献   

13.
Experimental evolution is characterized by exponential or logistic growth and periodic population bottlenecks. The fate of a rare beneficial mutation in these systems is influenced both by the bottleneck effect and by genetic drift. This paper explores the effects of incorporating genetic drift into models of fixation probability in populations with periodic bottlenecks. To model the inherent stochasticity during the growth phase in these populations, we assume a Poisson distribution of offspring. An analytical solution is developed to calculate the fixation probability and a computer simulation is used to verify the results. We find that the fixation rate of a favourable mutant is significantly lower when genetic drift is considered; fixation probability is reduced by over 25% for realistic experimental protocols. Our method is valid for both weak and strong selection; since very large selection coefficients have been reported in the experimental literature, this is an important improvement over previous results.  相似文献   

14.
Bengtsson BO 《Genetics》2012,191(4):1393-1395
Some genetic phenomena originate as mutations that are initially advantageous but decline in fitness until they become distinctly deleterious. Here I give the condition for a mutation-selection balance to form and describe some of the properties of the resulting equilibrium population. A characterization is also given of the fixation probabilities for such mutations.  相似文献   

15.
Whitlock MC  Gomulkiewicz R 《Genetics》2005,171(3):1407-1417
We investigate the probability of fixation of a new mutation arising in a metapopulation that ranges over a heterogeneous selective environment. Using simulations, we test the performance of several approximations of this probability, including a new analytical approximation based on separation of the timescales of selection and migration. We extend all approximations to multideme metapopulations with arbitrary population structure. Our simulations show that no single approximation produces accurate predictions of fixation probabilities for all cases of potential interest. At the limits of low and high migration, previously published approximations are found to be highly accurate. The new separation-of-timescales approach provides the best approximations for intermediate rates of migration among habitats, provided selection is not too intense. For nonzero migration and relatively strong selection, all approximations perform poorly. However, the probability of fixation is bounded above and below by the approximations based on low and high migration limits. Surprisingly, in our simulations with symmetric migration, heterogeneous selection in a metapopulation never decreased-and sometimes substantially increased-the probability of fixation of a new allele compared to metapopulations experiencing homogeneous selection with the same mean selection intensity.  相似文献   

16.
Roze D  Rousset F 《Genetics》2003,165(4):2153-2166
Population structure affects the relative influence of selection and drift on the change in allele frequencies. Several models have been proposed recently, using diffusion approximations to calculate fixation probabilities, fixation times, and equilibrium properties of subdivided populations. We propose here a simple method to construct diffusion approximations in structured populations; it relies on general expressions for the expectation and variance in allele frequency change over one generation, in terms of partial derivatives of a "fitness function" and probabilities of genetic identity evaluated in a neutral model. In the limit of a very large number of demes, these probabilities can be expressed as functions of average allele frequencies in the metapopulation, provided that coalescence occurs on two different timescales, which is the case in the island model. We then use the method to derive expressions for the probability of fixation of new mutations, as a function of their dominance coefficient, the rate of partial selfing, and the rate of deme extinction. We obtain more precise approximations than those derived by recent work, in particular (but not only) when deme sizes are small. Comparisons with simulations show that the method gives good results as long as migration is stronger than selection.  相似文献   

17.
In nonrecombining genomes, genetic linkage can be an important evolutionary force. Linkage generates interference interactions, by which simultaneously occurring mutations affect each other's chance of fixation. Here, we develop a comprehensive model of adaptive evolution in linked genomes, which integrates interference interactions between multiple beneficial and deleterious mutations into a unified framework. By an approximate analytical solution, we predict the fixation rates of these mutations, as well as the probabilities of beneficial and deleterious alleles at fixed genomic sites. We find that interference interactions generate a regime of emergent neutrality: all genomic sites with selection coefficients smaller in magnitude than a characteristic threshold have nearly random fixed alleles, and both beneficial and deleterious mutations at these sites have nearly neutral fixation rates. We show that this dynamic limits not only the speed of adaptation, but also a population's degree of adaptation in its current environment. We apply the model to different scenarios: stationary adaptation in a time-dependent environment and approach to equilibrium in a fixed environment. In both cases, the analytical predictions are in good agreement with numerical simulations. Our results suggest that interference can severely compromise biological functions in an adapting population, which sets viability limits on adaptive evolution under linkage.  相似文献   

18.
 We consider a simple model of a one-locus, two-allele population inhibiting a two-patch system and experiencing spatially heterogeneous viability selection. The populaton size is finite. We use a diffusion approximation and singular perturbation techniques to find the probability of fixation of a mutant allele. We focus on situations in which each allele is advantageous in one patch and deleterious in the other patch. Our theoretical results support the previous conclusions that, under certain conditions, small populations respond faster to selection than do large populations. We emphasize that knowledge of the dependence of migration rates on population size is crucial in evaluating the effects of population size on the rate of evolution.  相似文献   

19.
Tobias' repair-misrepair (RMR) model of cell survival is formulated as a Markov process, a sequence of discrete repair steps occurring at random times, and the probability of a sequence of viable repairs is calculated. The Markov formulation describes the time evolution of the probability distribution for the number of lesions in a cell. The probability of cell survival is calculated from the distribution of the initial number of lesions and the probabilities of the repair events. The production of lesions is formulated in accordance with the principles of microdosimetry, and the distribution of the initial number of lesions is obtained as an approximation for high and low linear energy transfer cases. The Markov formulation of the RMR model uses the same biological hypotheses as the original version with two statistical approximations deleted. These approximations are the neglect of the effect of statistical fluctuations in calculating the average rate of repair of lesions and the assumption that the final number of unrepaired and lethally misrepaired lesions has a Poisson distribution. The quantitative effect of these approximations is calculated, and a basis is provided for an alternative approach to calculating survival probabilities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号