首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial plant pathogens impose a continuous threat to global food production. Similar to animals, an innate immune system allows plants to recognize pathogens and swiftly activate defence. To activate a rapid response, receptor-mediated pathogen perception and subsequent downstream signalling depends on post-translational modification (PTM) of components essential for defence signalling. We discuss different types of PTMs that play a role in mounting plant immunity, which include phosphorylation, glycosylation, ubiquitination, sumoylation, nitrosylation, myristoylation, palmitoylation and glycosylphosphatidylinositol (GPI)-anchoring. PTMs are rapid, reversible, controlled and highly specific, and provide a tool to regulate protein stability, activity and localization. Here, we give an overview of PTMs that modify components essential for defence signalling at the site of signal perception, during secondary messenger production and during signalling in the cytoplasm. In addition, we discuss effectors from pathogens that suppress plant defence responses by interfering with host PTMs.  相似文献   

2.
Although interactions of plants with virulent and avirulent host pathogens are under intensive study, relatively little is known about plant interactions with non-adapted pathogens and the molecular events underlying non-host resistance. Here we show that two Pseudomonas syringae strains for which Arabidopsis is a non-host plant, P. syringae pathovar (pv.) glycinea (Psg) and P. syringae pv. phaseolicola (Psp),induce salicylic acid (SA) accumulation and pathogenesis-related gene expression at inoculation sites, and that induction of these defences is largely dependent on bacterial type III secretion. The defence signalling components activated by non-adapted bacteria resemble those initiated by host pathogens, including SA, non-expressor of PR-1, non-race specific disease resistance 1, phytoalexin-deficient 4 and enhanced disease susceptibility 1. However, some differences in individual defence pathways induced by Psg and Psp exist, suggesting that for each strain, distinct sets of type III effectors are recognized by the plant. Although induction of SA-related defences occurs, it does not directly contribute to bacterial non-host resistance, because Arabidopsis mutants compromised in SA signalling and other classical defence pathways do not permit enhanced survival of Psg or Psp in leaves. The finding that numbers of non-adapted bacteria in leaf extracellular spaces rapidly decline after inoculation suggests that they fail to overcome toxic or structural defence barriers preceding SA-related responses. Consistent with this hypothesis, rapid, type III secretion system-independent upregulation of the lignin biosynthesis genes, PAL1 and BCB, which might contribute to an early induced, cell wall-based defence mechanism, occurs in response to non-adapted bacteria. Moreover, knockout of PAL1 permits increased leaf survival of non-host bacteria. In addition, different survival rates of non-adapted bacteria in leaves from Arabidopsis accessions and mutants with distinct glucosinolate composition or hydrolysis exist. Possible roles for early inducible, cell wall-based defences and the glucosinolate/myrosinase system in bacterial non-host resistance are discussed.  相似文献   

3.
4.
Despite the deployment of antifungal defence strategies, fungal diseases occur in all types of multicellular organisms. In plants, the role of fungal chitin as pathogen-associated molecular pattern that activates host defence is well established. Interestingly, plants employ homologs of the chitin immune receptors to initiate microbial symbiosis. Accumulating evidence shows that fungal pathogens developed secreted effectors to disarm chitin-triggered host immunity.  相似文献   

5.
Plants perceive an assortment of external cues during their life cycle, including abiotic and biotic stressors. Biotic stress from a variety of pathogens, including viruses, oomycetes, fungi, and bacteria, is considered to be a substantial factor hindering plant growth and development. To hijack the host cell's defence machinery, plant pathogens have evolved sophisticated attack strategies mediated by numerous effector proteins. Several studies have indicated that plasmodesmata (PD), symplasmic pores that facilitate cell-to-cell communication between a cell and neighbouring cells, are one of the targets of pathogen effectors. However, in contrast to plant-pathogenic viruses, reports of fungal- and bacterial-encoded effectors that localize to and exploit PD are limited. Surprisingly, a recent study of PD-associated bacterial effectors has shown that a number of bacterial effectors undergo cell-to-cell movement via PD. Here we summarize and highlight recent advances in the study of PD-associated fungal/oomycete/bacterial effectors. We also discuss how pathogen effectors interfere with host defence mechanisms in the context of PD regulation.  相似文献   

6.
The soybean cyst nematode (SCN), Heterodera glycines, is one of the most destructive pathogens of soybeans. SCN is an obligate and sedentary parasite that transforms host plant root cells into an elaborate permanent feeding site, a syncytium. Formation and maintenance of a viable syncytium is an absolute requirement for nematode growth and reproduction. In turn, sensing pathogen attack, plants activate defence responses and may trigger programmed cell death at the sites of infection. For successful parasitism, H. glycines must suppress these host defence responses to establish and maintain viable syncytia. Similar to other pathogens, H. glycines engages in these molecular interactions with its host via effector proteins. The goal of this study was to conduct a comprehensive screen to identify H. glycines effectors that interfere with plant immune responses. We used Nicotiana benthamiana plants infected by Pseudomonas syringae and Pseudomonas fluorescens strains. Using these pathosystems, we screened 51 H. glycines effectors to identify candidates that could inhibit effector-triggered immunity (ETI) and/or pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We identified three effectors as ETI suppressors and seven effectors as PTI suppressors. We also assessed expression modulation of plant immune marker genes as a function of these suppressors.  相似文献   

7.
植食性昆虫与寄主植物通过协同进化形成了复杂的防御和反防御机制。本文系统综述了昆虫唾液效应子和激发子在植物与昆虫互作中的作用及机理。昆虫取食中释放的唾液激发子被植物识别而激活植物早期免疫反应,昆虫也能从口腔分泌效应子到植物体内抑制免疫;抗性植物则利用抗性(R)蛋白识别昆虫无毒效应子,启动效应子诱导的免疫反应,而昆虫又进化出多种方式来躲避植物R蛋白的识别。总之,在这场军备竞赛中,昆虫的唾液成分决定着昆虫能否取食成功。取食过程中,咀嚼式口器害虫分泌大量酶类到植物体内,而刺吸式害虫则分泌胶状和水样唾液到植物中,它们都利用激发子和效应子去调控植物的免疫防御反应。分析现已报道的昆虫效应子发现其作用机制各有不同,具体表现为影响植物早期防御信号,调控植物激素通路及其他通路,或靶向小分子RNA通路。本文还综述了昆虫激发子的最新进展,揭示激发子可以通过诱导释放植物次生代谢物以及调控激素水平、Ca2+内流和活性氧爆发增强植物抗性。最后对昆虫效应子的分泌特性、寄主特异性和多功能性作了分析,并对无毒效应子及其对应的植物R基因,以及激发子的模式识别受体的研究进行了展望。  相似文献   

8.
Nonhost resistance to plant pathogens can be constitutive or induced by microbes. Successful pathogens suppress microbe-induced plant defences by delivering appropriate effectors, which are apparently not sufficiently effective on nonhost plant species, as can be concluded from the strong host specificity of many biotroph plant pathogens. Such effectors act on particular plant targets, such as promoters or motifs in expressed sequences. Despite much progress in the elucidation of the molecular aspects of nonhost resistance to plant pathogens, very little is known about the genes that determine whether effectors can or cannot suppress the basal defence. In hosts they can, in nonhosts they cannot. The targets determining the host status of plants can be identified in inheritance studies. Recent reports have indicated that nonhost resistance is inherited polygenically, and exhibits strong similarity and association with the basal resistance of plants to adapted pathogens.  相似文献   

9.
He P  Shan L  Sheen J 《Cellular microbiology》2007,9(6):1385-1396
Recent studies have uncovered fascinating molecular mechanisms underlying plant-microbe interactions that coevolved dynamically. As in animals, the primary plant innate immunity is immediately triggered by the detection of common pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs). Different MAMPs are often perceived by distinct cell-surface pattern-recognition receptors (PRRs) and activate convergent intracellular signalling pathways in plant cells for broad-spectrum immunity. Successful pathogens, however, have evolved multiple virulence factors to suppress MAMP-triggered immunity. Specifically, diverse pathogenic bacteria have employed the type III secretion system to deliver a repertoire of virulence effector proteins to interfere with host immunity and promote pathogenesis. Plants challenged by pathogens have evolved the secondary plant innate immunity. In particular, some plants possess the specific intracellular disease resistance (R) proteins to effectively counteract virulence effectors of pathogens for effector-triggered immunity. This potent but cultivar-specific effector-triggered immunity occurs rapidly with localized programmed cell death/hypersensitive response to limit pathogen proliferation and disease development. Remarkably, bacteria have further acquired virulence effectors to block effector-triggered immunity. This review covers the latest findings in the dynamics of MAMP-triggered immunity and its interception by virulence factors of pathogenic bacteria.  相似文献   

10.
Plant pathogens deliver a variety of virulence factors to host cells to suppress basal defence responses and create suitable environments for their propagation. Plants have in turn evolved disease resistance genes whose products detect the virulence factors as a signal of invasion and activate effective defence responses. Understanding how a virulence effector contributes to virulence on susceptible hosts but becomes an avirulence factor that triggers defence responses on resistance hosts has been a major focus in plant research. Recent studies have shown that a growing list of pathogen-encoded effectors functions as proteases that are secreted into plant cells to modify host proteins. In addition, several plant proteases have been found to function in activation of the defence mechanism. These findings reveal that post-translational modification of host proteins through proteolytic processing is a widely used mechanism in regulating the plant defence response.  相似文献   

11.
The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector–host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.  相似文献   

12.
13.
Nuclear effector proteins released by bacteria, oomycete, nematode, and fungi burden the global environment and crop yield. Microbial effectors are key weapons in the evolutionary arms race between plants and pathogens, vital in determining the success of pathogenic colonization. Secreted effectors undermine a multitude of host cellular processes depending on their target destination. Effectors are classified by their localization as either extracellular (apoplastic) or intracellular. Intracellular effectors can be further subclassified by their compartment such as the nucleus, cytoplasm or chloroplast. Nuclear effectors bring into question the role of the plant nucleus' intrinsic defence strategies and their vulnerability to effector-based manipulation. Nuclear effectors interfere with multiple nuclear processes including the epigenetic regulation of the host chromatin, the impairment of the trans-kingdom antifungal RNAi machinery, and diverse classes of immunity-associated host proteins. These effector-targeted pathways are widely conserved among different hosts and regulate a broad array of plant cellular processes. Thus, these nuclear sites constitute meaningful targets for effectors to subvert the plant defence system and acquire resources for pathogenic propagation. This review provides an extensive and comparative compilation of diverse plant microbe nuclear effector libraries, thereby highlighting the distinct and conserved mechanisms these effectors employ to modulate plant cellular processes for the pathogen's profit.  相似文献   

14.
Recent studies on plant immunity have suggested that a pathogen should suppress induced plant defense in order to infect a plant species, which otherwise would have been a nonhost to the pathogen. For this purpose, pathogens exploit effector molecules to interfere with different layers of plant defense responses. In this review, we summarize the latest findings on plant factors that are activated by pathogen effectors to suppress plant immunity. By looking from a different point of view into host and nonhost resistance, we propose a novel breeding strategy: disabling plant disease susceptibility genes (S-genes) to achieve durable and broad-spectrum resistance.  相似文献   

15.
16.
17.
Plants frequently suffer attack from herbivores and microbial pathogens, and have evolved a complex array of defence mechanisms to resist defoliation and disease. These include both preformed defences, ranging from structural features to stores of toxic secondary metabolites, and inducible defences, which are activated only after an attack is detected. It is well known that plant defences against pests and pathogens are commonly affected by environmental conditions, but the mechanisms by which responses to the biotic and abiotic environments interact are only poorly understood. In this review, we consider the impact of light on plant defence, in terms of both plant life histories and rapid scale molecular responses to biotic attack. We bring together evidence that illustrates that light not only modulates defence responses via its influence on biochemistry and plant development but, in some cases, is essential for the development of resistance. We suggest that the interaction between the light environment and plant defence is multifaceted, and extends across different temporal and biological scales.  相似文献   

18.
Yersinia effectors target mammalian signalling pathways   总被引:8,自引:4,他引:4  
Animals have an immune system to fight off challenges from both viruses and bacteria. The first line of defence is innate immunity, which is composed of cells that engulf pathogens as well as cells that release potent signalling molecules to activate an inflammatory response and the adaptive immune system. Pathogenic bacteria have evolved a set of weapons, or effectors, to ensure survival in the host. Yersinia spp. use a type III secretion system to translocate these effector proteins, called Yops, into the host. This report outlines how Yops thwart the signalling machinery of the host immune system.  相似文献   

19.
Plant-bacterial pathogen interactions mediated by type III effectors   总被引:1,自引:0,他引:1  
Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity.  相似文献   

20.
Plant immunity is often defined by the immunity hormones: salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). These hormones are well known for differentially regulating defence responses against pathogens. In recent years, the involvement of other plant growth hormones such as auxin, gibberellic acid, abscisic acid, and cytokinins (CKs) in biotic stresses has been recognized. Previous reports have indicated that endogenous and exogenous CK treatment can result in pathogen resistance. We show here that CK induces systemic immunity in tomato (Solanum lycopersicum), modulating cellular trafficking of the pattern recognition receptor (PRR) LeEIX2, which mediates immune responses to Xyn11 family xylanases, and promoting resistance to Botrytis cinerea and Oidium neolycopersici in an SA- and ET-dependent mechanism. CK perception within the host underlies its protective effect. Our results support the notion that CK promotes pathogen resistance by inducing immunity in the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号