首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
Our understanding of the community assembly processes acting on non-indigenous species (NIS), as well as the relationship with native species is limited, especially in marine ecosystems. To overcome this knowledge gap we here develop a trait-based approach based on the functional distinctiveness metric to assess niche overlap between NIS and native species, using high-resolution data on benthic invertebrate communities in the Baltic Sea. Our results show that NIS retain a certain degree of similarity with native species, but display one or a few singular unique traits (e.g., bioturbation ability). Furthermore, we demonstrate that community assembly processes, including both environmental filtering and limiting similarity affect NIS establishment, but that their effects may be highly context dependent, as illustrated by pronounced spatial patterns in distinctiveness. Finally, our trait-based approach provides a generic framework applicable to other areas and organisms, to better understand and address biological invasions.  相似文献   

2.
Ecological approaches to community assembly have emphasized the interplay between neutral processes, niche-based environmental filtering and niche-based species sorting in an interactive milieu. Recently, progress has been made in terms of aligning our vocabulary with conceptual advances, assessing how trait-based community functional parameters differ from neutral expectation and assessing how traits vary along environmental gradients. Experiments have confirmed the influence of these processes on assembly and have addressed the role of dispersal in shaping local assemblages. Community phylogenetics has forged common ground between ecologists and biogeographers, but it is not a proxy for trait-based approaches. Community assembly theory is in need of a comparative synthesis that addresses how the relative importance of niche and neutral processes varies among taxa, along environmental gradients, and across scales. Towards that goal, we suggest a set of traits that probably confer increasing community neutrality and regionality and review the influences of stress, disturbance and scale on the importance of niche assembly. We advocate increasing the complexity of experiments in order to assess the relative importance of multiple processes. As an example, we provide evidence that dispersal, niche processes and trait interdependencies have about equal influence on trait-based assembly in an experimental grassland.  相似文献   

3.
Cyanobacteria dominance is often associated with economic, ecological and health problems. The potential production of toxic compounds calls for frequent monitoring of cyanobacteria and their toxin production in many aquatic systems. Methods to simplify this process and facilitate management responses to sudden environmental changes are needed to improve the capability of risk-assessment. We tested the effectiveness of two different functional approaches (Functional Groups – FG, Reynolds et al., 2002; and Morphology-Based Functional Groups – MBFG, Kruk et al., 2010) as well as single species and taxonomic classifications as the best proxy of spatio-temporal phytoplankton dynamics and dominance of toxic algae in an impacted transitional river–reservoir system in the tropics. The Paraíba do Sul River and Funil Reservoir are located in one of the most heavily impacted regions of Brazil, and the latter system has a history of intense, long-lasting toxic cyanobacteria blooms. Sampling was conducted over the two climatological periods of the region: warm-rainy (October/2011 and January/2012) and cold-dry (July/2011 and May/2012), with stations in the following areas: tributary, reservoir and river (downstream from the dam). Our results showed that the MBFG classification was the most effective approach, i.e., best explained the response of the phytoplankton community to environmental variations. Environmental factors including light, nutrients, water temperature and hydrology increased the occurrence of different MBFGs on both spatial and temporal scales. The lotic areas showed a more diverse composition of MBFGs, including species with high to moderate tolerance to light limitation and flushing conditions (MBFGs I, III, IV, V and VI). In Funil Reservoir, phytoplankton biovolume was dominated by bloom-forming cyanobacteria (MBFGs III and VII) and remained high throughout the study. This dominance was related to the overall eutrophic conditions, low light availability and increased water-column stability of the reservoir. The seasonal dynamics in the reservoir was mainly related to changes in temperature and hydrology. Our results show for the first time that morphology captures efficiently eco-strategies of bloom-forming cyanobacteria and the MBFG approach can be used to predict and monitor the development of cyanobacteria HABs in temporal and spatial scales.  相似文献   

4.
Alien plant species invasiveness and impact on diversity (i.e. species richness and composition) can be driven by the altered competitive interactions experienced by the invader in its invaded range compared to its native range. Trait-based competition effects on invasiveness can be mediated through size-asymmetric competition, i.e. a trait suit of the invader that drives competitive dominance, and through ‘niche differences', i.e. trait differentiation and thus minimized competition between invader and the invaded community. In terms of invasion impact, size-asymmetric competition is expected to result in competitive exclusion of co-occurring subordinate species, whereas ‘niche differences' might result in competitive exclusion of the most functionally similar co-occurring species. Although observational work does not allow the full disentanglement of both trait-based effects, it does allow to verify the occurrence of expected theoretical trait patters. In this study, we explored the trait-based competition effects on invasiveness and diversity impact for Rosa rugosa in both its invaded range in Belgium and its native range in Japan, based on seven functional traits across 100 vegetation plots. Following the predictions for enhanced invasiveness, we found much lower functional overlap between R. rugosa and the co-occurring species in the invaded range compared to the native range. This likely also explains the absence of diversity impact in its native range. Despite the absence of changes in species richness in the invaded range, the invader did strongly impact species composition of invaded communities. This impact occurred through strong shade tolerance responses, suggesting size-asymmetric competition effects and cover loss of co-occurring dominant species, next to exclusion of co-occurring species most functionally similar to the invader; suggesting niche difference effects. In conclusion, this case-study illustrates how exploring functional trait patterns across a species native and invaded range can help in understanding how trait-based competition processes can affect invasiveness and community impact.  相似文献   

5.
Andrew Siefert 《Oecologia》2012,170(3):767-775
Environmental filtering and niche differentiation are processes proposed to drive community assembly, generating nonrandom patterns in community trait distributions. Despite the substantial intraspecific trait variation present in plant communities, most previous studies of trait-based community assembly have used species mean trait values and therefore not accounted for intraspecific variation. Using a null model approach, I tested for environmental filtering and niche differentiation acting on three key functional traits??vegetative height, specific leaf area (SLA), and leaf dry matter content (LDMC)??in old-field plant communities. I also examined how accounting for intraspecific variation at the among-plot and individual levels affected the detection of nonrandom assembly patterns. Tests using fixed species mean trait values provided evidence of environmental filtering acting on height and SLA and niche differentiation acting on SLA. Including plot-level intraspecific variation increased the strength of these patterns, indicating an important role of intraspecific variation in community assembly. Tests using individual trait data indicated strong environmental filtering acting on all traits, but provided no evidence of niche differentiation, although these signals may have been obscured by the effects of dispersal limitation and spatial aggregation of conspecific individuals. There was also strong evidence of nonrandom assembly of individuals within single species, with the strength of environmental filtering varying among species. This study demonstrates that, while analyses using fixed species mean trait values can provide insights into community assembly processes, accounting for intraspecific variation provides a more complete view of communities and the processes driving their assembly.  相似文献   

6.
When functional traits are evolutionarily conserved, phylogenetic relatedness can serve as a proxy for ecological similarity to examine whether functional differences among species mediate community assembly. Using phylogenetic- and trait-based analyses, we demonstrate that sponge-dwelling shrimp (Synalpheus) assemblages are structured by size-based habitat filtering, interacting with competitive exclusion mediated by social system. Most shrimp communities were more closely related and/or more similar in size than randomized communities, consistent with habitat filtering facilitated by phylogenetically conserved body size. Those sponges with greater space heterogeneity hosted shrimp communities with greater size diversity, corroborating the importance of size in niche use. However, communities containing eusocial shrimp - which cooperatively defend territories - were less phylogenetically related and less similar in size, suggesting that eusociality enhances competitive ability and drives competitive exclusion. Our analyses demonstrate that community assembly in this diverse system occurs via traits mediating niche use and differential competitive ability.  相似文献   

7.
陶敏  岳兴建  岳珊  代丽娜  韩文文  王永明  刘果  李斌 《生态学报》2021,41(23):9457-9469
为了解四川丘陵区中小型水库浮游植物群落结构周年变化,掌握其演替规律并预测其发展方向,于2016年-2017年分季节对该地区10个典型水库进行了周年研究。结果显示:共检出浮游植物9门104属188种,其中优势种4门16属16种,以湖泊假鱼腥藻(Pseudanabaena linmnetica)优势度指数为最高;蓝藻密度在各季节、各水库中均占据优势,尤其是夏季。优势种生态位宽度和生态位重叠度在存在明显的季节差异性,并受到水温、营养条件等环境因子的显著影响;优势种可分为3个类别,竞争力相对较强的7个种中有5种蓝藻;全年发展性最强的种类也多为蓝藻,特别是湖泊假鱼腥藻等具有产毒潜力的种类,其优势度存在进一步扩大的风险。种间联结性检验结果显示,群落种间大致表现出净的正联结,优势种种对间正负关联比大于1,该类水库群落结构较为稳定且存在正向演替的趋势,可能会导致夏季间断性产毒蓝藻水华的风险。研究结果可为四川丘陵区中小型水库浮游植物群落演替研究以及蓝藻水华预警提供基础资料。  相似文献   

8.
Questions: Perching and nursing effects drive initial steps of forest expansion over grasslands. Nursing effect is obviously related to niche mechanisms, while perching effect is likely to result both from neutral and niche factors. This study assessed the effect of neutral and niche factors on species composition in sapling communities developing beneath isolated trees/shrubs (ITS) in grassland. Location: A mosaic of Campos grassland and Araucaria forest in São Francisco de Paula, southern Brazil (29°28′S, 50°13′W). Methods: We described sapling communities beneath 32 ITS using mean number of forest woody saplings of different species. We performed a stepwise canonical correspondence analysis (CCA) to select ITS traits that maximized the association with species composition. Then we evaluated the contribution of distance from seed source, ITS traits and distance‐structured ITS traits on sapling community assembly using a variation partitioning method based on CCA and partial CCA. Results: Sapling species composition was significantly explained by ITS traits (ITS dispersal mode, ITS growth form, crown area:ITS height ratio, crown area, ITS height and crown area:volume ratio). Distance from seed sources explained only a minor, non‐significant fraction of sapling species composition. Distance‐structured trait variation was negligible. Conclusions: Sapling community assembly beneath ITS was mostly explained by niche factors related to both nursing and perching effects. Dispersal limitation explained only a small fraction of variation in species composition beneath ITS, suggesting that neutral‐based perching effect had a minor role in community assembly.  相似文献   

9.
Background: Trait-based assembly rules are a powerful tool in community ecology, used to explore the pattern and process of community structure (richness and composition).

Aims: A preliminary test for the utility of trait-based assembly rules in explaining cryptogamic epiphyte communities (lichens and bryophytes).

Methods: We sampled epiphytes from three different tree species (aspen, birch and pine), and from trees of contrasting age. The community composition of epiphyte species (taxon analysis) and functional groups (trait analysis) was summarised using multivariate ordination (nonmetric multidimensional scaling, NMDS).

Results: Ordination documented a widely observed pattern in which different tree species have taxonomically different epiphyte communities. However, NMDS sample scores were correlated to tree age in the trait-based analysis, but not in the taxon analysis.

Conclusions: Our results point to the existence of a common pattern in community traits during succession (on trees of different age) when measured for epiphyte communities with contrasting taxonomic composition. This pattern is evidenced by consistent trends in lichen growth form and reproductive strategy (sexual vs. asexual).  相似文献   

10.
Several multi-year biodiversity experiments have shown positive species richness–productivity relationships which strengthen over time, but the mechanisms which control productivity are not well understood. We used experimental grasslands (Jena Experiment) with mixtures containing different numbers of species (4, 8, 16 and 60) and plant functional groups (1–4; grasses, legumes, small herbs, tall herbs) to explore patterns of variation in functional trait composition as well as climatic variables as predictors for community biomass production across several years (from 2003 to 2009). Over this time span, high community mean trait values shifted from the dominance of trait values associated with fast growth to trait values suggesting a conservation of growth-related resources and successful reproduction. Increasing between-community convergence in means of several productivity-related traits indicated that environmental filtering and exclusion of competitively weaker species played a role during community assembly. A general trend for increasing functional trait diversity within and convergence among communities suggested niche differentiation through limiting similarity in the longer term and that similar mechanisms operated in communities sown with different diversity. Community biomass production was primarily explained by a few key mean traits (tall growth, large seed mass and leaf nitrogen concentration) and to a smaller extent by functional diversity in nitrogen acquisition strategies, functional richness in multiple traits and functional evenness in light-acquisition traits. Increasing species richness, presence of an exceptionally productive legume species (Onobrychis viciifolia) and climatic variables explained an additional proportion of variation in community biomass. In general, community biomass production decreased through time, but communities with higher functional richness in multiple traits had high productivities over several years. Our results suggest that assembly processes within communities with an artificially maintained species composition maximize functional diversity through niche differentiation and exclusion of weaker competitors, thereby maintaining their potential for high productivity.  相似文献   

11.
Understanding what governs community assembly and the maintenance of biodiversity is a central issue in ecology, but has been a continuing debate. A key question is the relative importance of habitat specialization (niche assembly) and dispersal limitation (dispersal assembly). In the middle of the Loess Plateau, northwestern China, we examined how species turnover in Liaodong oak (Quercus wutaishanica) forests differed between observed and randomized assemblies, and how this difference was affected by habitat specialization and dispersal limitation using variation partitioning. Results showed that expected species turnover based on individual randomization was significantly lower than the observed value (< 0.01). The turnover deviation significantly depended on the environmental and geographical distances (< 0.05). Environmental and spatial variables significantly explained approximately 40% of the species composition variation at all the three layers (< 0.05). However, their contributions varied among forest layers; the herb and shrub layers were dominated by environmental factors, whereas the canopy layer was dominated by spatial factors. Our results underscore the importance of synthetic models that integrate effects of both dispersal and niche assembly for understanding the community assembly. However, habitat specialization (niche assembly) may not always be the dominant process in community assembly, even under harsh environments. Community assembly may be in a trait‐dependent manner (e.g., forest layers in this study). Thus, taking more species traits into account would strengthen our confidence in the inferred assembly mechanisms.  相似文献   

12.
Invasions of non-native species are considered to have significant impacts on native species, but few studies have quantified the direct effects of invasions on native community structure and composition. Many studies on the effects of invasions fail to distinguish between (1) differential responses of native and non-native species to environmental conditions, and (2) direct impacts of invasions on native communities. In particular, invasions may alter community assembly following disturbance and prevent recolonization of native species. To determine if invasions directly impact native communities, we established 32 experimental plots (27.5 m2) and seeded them with 12 native species. Then, we added seed of a non-native invasive grass (Microstegium vimineum) to half of the plots and compared native plant community responses between control and invaded plots. Invasion reduced native biomass by 46, 64, and 58%, respectively, over three growing seasons. After the second year of the experiment, invaded plots had 43% lower species richness and 38% lower diversity as calculated from the Shannon index. Nonmetric multidimensional scaling ordination showed a significant divergence in composition between invaded and control plots. Further, there was a strong negative relationship between invader and native plant biomass, signifying that native plants are more strongly suppressed in densely invaded areas. Our results show that a non-native invasive plant inhibits native species establishment and growth following disturbance and that native species do not gain competitive dominance after multiple growing seasons. Thus, plant invaders can alter the structure of native plant communities and reduce the success of restoration efforts.  相似文献   

13.
Evolutionary community ecology is an emerging field of study that includes evolutionary principles such as individual trait variation and plasticity of traits to provide a more mechanistic insight as to how species diversity is maintained and community processes are shaped across time and space. In this review we explore phenotypic plasticity in functional traits and its consequences at the community level. We argue that resource requirement and resource uptake are plastic traits that can alter fundamental and realised niches of species in the community if environmental conditions change. We conceptually add to niche models by including phenotypic plasticity in traits involved in resource allocation under stress. Two qualitative predictions that we derive are: (1) plasticity in resource requirement induced by availability of resources enlarges the fundamental niche of species and causes a reduction of vacant niches for other species and (2) plasticity in the proportional resource uptake results in expansion of the realized niche, causing a reduction in the possibility for coexistence with other species. We illustrate these predictions with data on the competitive impact of invasive species. Furthermore, we review the quickly increasing number of empirical studies on evolutionary community ecology and demonstrate the impact of phenotypic plasticity on community composition. Among others, we give examples that show that differences in the level of phenotypic plasticity can disrupt species interactions when environmental conditions change, due to effects on realized niches. Finally, we indicate several promising directions for future phenotypic plasticity research in a community context. We need an integrative, trait-based approach that has its roots in community and evolutionary ecology in order to face fast changing environmental conditions such as global warming and urbanization that pose ecological as well as evolutionary challenges.  相似文献   

14.

Aim

Theoretical, experimental and observational studies have shown that biodiversity–ecosystem functioning (BEF) relationships are influenced by functional community structure through two mutually non-exclusive mechanisms: (1) the dominance effect (which relates to the traits of the dominant species); and (2) the niche partitioning effect [which relates to functional diversity (FD)]. Although both mechanisms have been studied in plant communities and experiments at small spatial extents, it remains unclear whether evidence from small-extent case studies translates into a generalizable macroecological pattern. Here, we evaluate dominance and niche partitioning effects simultaneously in grassland systems world-wide.

Location

Two thousand nine hundred and forty-one grassland plots globally.

Time period

2000–2014.

Major taxa studied

Vascular plants.

Methods

We obtained plot-based data on functional community structure from the global vegetation plot database “sPlot”, which combines species composition with plant trait data from the “TRY” database. We used data on the community-weighted mean (CWM) and FD for 18 ecologically relevant plant traits. As an indicator of primary productivity, we extracted the satellite-derived normalized difference vegetation index (NDVI) from MODIS. Using generalized additive models and deviation partitioning, we estimated the contributions of trait CWM and FD to the variation in annual maximum NDVI, while controlling for climatic variables and spatial structure.

Results

Grassland communities dominated by relatively tall species with acquisitive traits had higher NDVI values, suggesting the prevalence of dominance effects for BEF relationships. We found no support for niche partitioning for the functional traits analysed, because NDVI remained unaffected by FD. Most of the predictive power of traits was shared by climatic predictors and spatial coordinates. This highlights the importance of community assembly processes for BEF relationships in natural communities.

Main conclusions

Our analysis provides empirical evidence that plant functional community structure and global patterns in primary productivity are linked through the resource economics and size traits of the dominant species. This is an important test of the hypotheses underlying BEF relationships at the global scale.  相似文献   

15.

Background and Aims

Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management.

Scope

We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change.

Conclusions

To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels.  相似文献   

16.
Aim Increasingly, ecologists are using evolutionary relationships to infer the mechanisms of community assembly. However, modern communities are being invaded by non‐indigenous species. Since natives have been associated with one another through evolutionary time, the forces promoting character and niche divergence should be high. On the other hand, exotics have evolved elsewhere, meaning that conserved traits may be more important in their new ranges. Thus, co‐occurrence over sufficient time‐scales for reciprocal evolution may alter how phylogenetic relationships influence assembly. Here, we examined the phylogenetic structure of native and exotic plant communities across a large‐scale gradient in species richness and asked whether local assemblages are composed of more or less closely related natives and exotics and whether phylogenetic turnover among plots and among sites across this gradient is driven by turnover in close or distant relatives differentially for natives and exotics. Location Central and northern California, USA. Methods We used data from 30 to 50 replicate plots at four sites and constructed a maximum likelihood molecular phylogeny using the genes: matK, rbcl, ITS1 and 5.8s. We compared community‐level measures of native and exotic phylogenetic diversity and among‐plot phylobetadiversity. Results There were few exotic clades, but they tended to be widespread. Exotic species were phylogenetically clustered within communities and showed low phylogenetic turnover among communities. In contrast, the more species‐rich native communities showed higher phylogenetic dispersion and turnover among sites. Main conclusions The assembly of native and exotic subcommunities appears to reflect the evolutionary histories of these species and suggests that shared traits drive exotic patterns while evolutionary differentiation drives native assembly. Current invasions appear to be causing phylogenetic homogenization at regional scales.  相似文献   

17.
Aims Although the niche concept is of prime importance in ecology, the quantification of plant species' niches remains difficult. Here we propose that plant functional traits, as determinants of species performance, may be useful tools for quantifying species niche parameters over environmental gradients.Important findings Under this framework, the mean trait values of a species determine its niche position along gradients, and intraspecific trait variability determines its niche breadth. This trait-based approach can provide an operational assessment of niche for a potentially large number of species, making it possible to understand and predict species niche shifts under environmental changes. We further advocate a promising method that recently appeared in the literature, which partitions trait diversity into among- and within-community components as a way to quantify the species niche in units of traits instead of environmental parameters. This approach allows the switch of the focus from ecological niches to trait niches, facilitating the examination of species coexistence along undefined environmental gradients. Altogether, the trait-based approach provides a promising toolkit for quantifying the species ecological niche and for understanding the evolution of species niche and traits.  相似文献   

18.
All animals on Earth compete for free energy, which is acquired, assimilated, and ultimately allocated to growth and reproduction. Competition is strongest within communities of sympatric, ecologically similar animals of roughly equal size (i.e. horizontal communities), which are often the focus of traditional community ecology. The replacement of taxonomic identities with functional traits has improved our ability to decipher the ecological dynamics that govern the assembly and functioning of animal communities. Yet, the use of low-resolution and taxonomically idiosyncratic traits in animals may have hampered progress to date. An animal's metabolic rate (MR) determines the costs of basic organismal processes and activities, thus linking major aspects of the multifaceted constructs of ecological niches (where, when, and how energy is obtained) and ecological fitness (how much energy is accumulated and passed on to future generations). We review evidence from organismal physiology to large-scale analyses across the tree of life to propose that MR gives rise to a group of meaningful functional traits – resting metabolic rate (RMR), maximum metabolic rate (MMR), and aerobic scope (AS) – that may permit an improved quantification of the energetic basis of species coexistence and, ultimately, the assembly and functioning of animal communities. Specifically, metabolic traits integrate across a variety of typical trait proxies for energy acquisition and allocation in animals (e.g. body size, diet, mobility, life history, habitat use), to yield a smaller suite of continuous quantities that: (1) can be precisely measured for individuals in a standardized fashion; and (2) apply to all animals regardless of their body plan, habitat, or taxonomic affiliation. While integrating metabolic traits into animal community ecology is neither a panacea to disentangling the nuanced effects of biological differences on animal community structure and functioning, nor without challenges, a small number of studies across different taxa suggest that MR may serve as a useful proxy for the energetic basis of competition in animals. Thus, the application of MR traits for animal communities can lead to a more general understanding of community assembly and functioning, enhance our ability to trace eco-evolutionary dynamics from genotypes to phenotypes (and vice versa), and help predict the responses of animal communities to environmental change. While trait-based ecology has improved our knowledge of animal communities to date, a more explicit energetic lens via the integration of metabolic traits may further strengthen the existing framework.  相似文献   

19.
Trait-based approaches have long been a feature of physiology and of ecology. While the latter fields drifted apart in the twentieth century, they are converging owing at least partly to growing similarities in their trait-based approaches, which have much to offer conservation biology. The convergence of spatially explicit approaches to understanding trait variation and its ecological implications, such as encapsulated in community assembly and macrophysiology, provides a significant illustration of the similarity of these areas. Both adopt trait-based informatics approaches which are not only providing fundamental biological insights, but are also delivering new information on how environmental change is affecting diversity and how such change may perhaps be mitigated. Such trait-based conservation physiology is illustrated here for each of the major environmental change drivers, specifically: the consequences of overexploitation for body size and physiological variation; the impacts of vegetation change on thermal safety margins; the consequences of changing net primary productivity and human use thereof for physiological variation and ecosystem functioning; the impacts of rising temperatures on water loss in ectotherms; how hemisphere-related variation in traits may affect responses to changing rainfall regimes and pollution; and how trait-based approaches may enable interactions between climate change and biological invasions to be elucidated.  相似文献   

20.
One of the most detrimental impacts of invasive species is the exclusion of native species, which reduces biodiversity and can alter community structure. Coexistence between invaders and native species across large scales, however, might be promoted by niche partitioning and/or stochastic processes, even when one species is excluded in some habitats. Here, we examined the effects of species traits, stochastic processes, and niche partitioning on coexistence of two morphocryptic whitefly species in the Bemisia tabaci complex: the invasive Mediterranean (MED) species and the native Middle East-Asia Minor 1 (MEAM1) species. These species engage in intense reproductive interference, which can result in the exclusion of one species or the other in shared habitats. Both species, however, have coexisted in sympatry in Israel for many years, where MED is invasive and MEAM1 is native. Using a spatially explicit model, we show that both stochastic processes and niche partitioning can promote coexistence between MEAM1 and MED, although predicted community structure differs drastically in each scenario. Comparison of field observations with model results indicated that variation in habitat use leading to niche partitioning was a primary factor driving coexistence between MEAM1 and MED across landscapes, although stochastic processes affected the establishment of rare species within habitats. In many systems, combining models with field surveys can be used to isolate and test mechanisms underlying patterns of community structure following invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号