首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies performed on low-density primary neuronal cultures have enabled dissection of molecular and cellular changes during N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). Various electrophysiological and chemical induction protocols were developed for the persistent enhancement of excitatory synaptic transmission in hippocampal neuronal cultures. The characterisation of these plasticity models confirmed that they share many key properties with the LTP of CA1 neurons, extensively studied in hippocampal slices using electrophysiological techniques. For example, LTP in dissociated hippocampal neuronal cultures is also dependent on Ca(2+) influx through post-synaptic NMDA receptors, subsequent activation and autophosphorylation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and an increase in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor insertion at the post-synaptic membrane. The availability of models of LTP in cultured hippocampal neurons significantly facilitated the monitoring of changes in endogenous postsynaptic receptor proteins and the investigation of the associated signalling mechanisms that underlie LTP. A central feature of LTP of excitatory synapses is the recruitment of AMPA receptors at the postsynaptic site. Results from the use of cell culture-based models started to establish the mechanism by which synaptic input controls a neuron's ability to modify its synapses in LTP. This review focuses on key features of various LTP induction protocols in dissociated hippocampal neuronal cultures and the applications of these plasticity models for the investigation of activity-induced changes in native AMPA receptors.  相似文献   

2.
Ye B  Liao D  Zhang X  Zhang P  Dong H  Huganir RL 《Neuron》2000,26(3):603-617
The PDZ domain-containing proteins, such as PSD-95 and GRIP, have been suggested to be involved in the targeting of glutamate receptors, a process that plays a critical role in the efficiency of synaptic transmission and plasticity. To address the molecular mechanisms underlying AMPA receptor synaptic localization, we have identified several GRIP-associated proteins (GRASPs) that bind to distinct PDZ domains within GRIP. GRASP-1 is a neuronal rasGEF associated with GRIP and AMPA receptors in vivo. Overexpression of GRASP-1 in cultured neurons specifically reduced the synaptic targeting of AMPA receptors. In addition, the subcellular distribution of both AMPA receptors and GRASP-1 was rapidly regulated by the activation of NMDA receptors. These results suggest that GRASP-1 may regulate neuronal ras signaling and contribute to the regulation of AMPA receptor distribution by NMDA receptor activity.  相似文献   

3.
Glutamate-releasing synapses are essential in fast neuronal signalling. Plasticity at these synapses is important for learning and memory as well as for the activity-dependent control of neuronal development. We have evaluated the trial-to-trial fluctuations of excitatory postsynaptic currents mediated by glutamate receptors of the AMPA and NMDA types in CA1 pyramidal cells. By using the whole cell patch clamp technique in brain slices from young rats, we have demonstrated that the relative variability of AMPA and NMDA receptor mediated responses, expressed as the coefficient of variation, is similar for these two types of responses [Brain Res. 800 (1998) 253-259]. The present paper summarizes and discusses these results in relation to current theories on hippocampal synaptic plasticity, especially with regard to the ideas of glutamate spillover and silent synapses. Our finding of a correspondence between AMPA and NMDA responses with respect to fluctuations is compatible with our previous finding of equal relative changes of the two during activity induced synaptic plasticity. However, the results argue against the glutamate spillover model according to which the effect of glutamate--and hence the induction of plasticity--may spread unspecifically between synapses. But how can silent synapses become functional if no spread of glutamate occurs and no initial signal is present to trigger the functionalization? Is it necessary that NMDA responses are present at these synapses, which are then silent merely with respect to AMPA receptors, or do other alternatives exist? Our discussion aims to elucidate these questions.  相似文献   

4.
Glutamate receptor trafficking in and out of synapses is one of the core mechanisms for rapid changes in the number of functional receptors during synaptic plasticity. Recent data have shown that the fast gain and loss of receptors from synaptic sites are accounted for by endocytic/exocytic processes and by their lateral diffusion in the plane of the membrane. These events are interdependent and regulated by neuronal activity and interactions with scaffolding proteins. We review here the main cellular steps for AMPA and NMDA receptor synthesis, traffic within intracellular organelles, membrane exocytosis/endocytosis and surface trafficking. We focus on new findings that shed light on the regulation of receptor cycling events and surface trafficking and the way that this might reshape our thinking about the specific regulation of receptor accumulation at synapses.  相似文献   

5.
Liauw J  Wang GD  Zhuo M 《生理学报》2003,55(4):373-380
谷氨酸性突触是哺乳动物神经系统的主要兴奋性突触。在正常条件下,大多数的突触反应是由谷氨酸的AMPA受体传递的。NMDA受体在静息电位下为镁离子抑制。在被激活时,NMDA受体主要参与突触的可塑性变化。但是,许多NMDA受体拮抗剂在全身或局部注射时能产生行为效应,提示NMDA受体可能参与静息状态的生理功能。此文中,我们在离体的前额扣带回脑片上进行电生理记录,发现NMDA受体参与前额扣带回的突触传递。在重复刺激或近于生理性温度时,NMDA受体传递的反应更为明显。本文直接显示了NMDA受体参与前额扣带回的突触传递,并提示NMDA受体在前额扣带回中起着调节神经元兴奋的重要作用。  相似文献   

6.
Newpher TM  Ehlers MD 《Neuron》2008,58(4):472-497
Among diverse factors regulating excitatory synaptic transmission, the abundance of postsynaptic glutamate receptors figures prominently in molecular memory and learning-related synaptic plasticity. To allow for both long-term maintenance of synaptic transmission and acute changes in synaptic strength, the relative rates of glutamate receptor insertion and removal must be tightly regulated. Interactions with scaffolding proteins control the targeting and signaling properties of glutamate receptors within the postsynaptic membrane. In addition, extrasynaptic receptor populations control the equilibrium of receptor exchange at synapses and activate distinct signaling pathways involved in plasticity. Here, we review recent findings that have shaped our current understanding of receptor mobility between synaptic and extrasynaptic compartments at glutamatergic synapses, focusing on AMPA and NMDA receptors. We also examine the cooperative relationship between intracellular trafficking and surface diffusion of glutamate receptors that underlies the expression of learning-related synaptic plasticity.  相似文献   

7.
Recent studies have shown that the activation of NMDA receptors can induce rapid changes in dendritic morphology and synaptic recruitment of AMPA receptors in dendritic spines. Here, we analyze the time course of NMDA receptor-induced changes in dendrite morphology and recruitment of AMPA receptors to synapses in cultured neurons. Activation of NMDA receptors causes a rapid transient increase in the size of preexisting spines and then the gradual formation of new dendritic protrusions and spines. NMDA receptor activation also induced GFP-tagged AMPA receptors to cluster in dendrites and to be inserted into the surface of dendritic spines. These results indicate that NMDA receptor activation induces several phases of dendritic plasticity, initial expansion of dendritic spines, followed by the de novo formation of spines and AMPA receptor dendritic clustering and surface expression on spines. Each of these forms of plasticity may have significant effects on the efficacy of synaptic transmission.  相似文献   

8.
The hormone leptin crosses the blood brain barrier and regulates numerous neuronal functions, including hippocampal synaptic plasticity. Here we show that application of leptin resulted in the reversal of long-term potentiation (LTP) at hippocampal CA1 synapses. The ability of leptin to depotentiate CA1 synapses was concentration-dependent and it displayed a distinct temporal profile. Leptin-induced depotentiation was not associated with any change in the paired pulse facilitation ratio or the coefficient of variance, indicating a post-synaptic locus of expression. Moreover, the synaptic activation of NMDA receptors was required for leptin-induced depotentiation as the effects of leptin were blocked by the competitive NMDA receptor antagonist, D-aminophosphovaleric acid (D-AP5). The signaling mechanisms underlying leptin-induced depotentiation involved activation of the calcium/calmodulin-dependent protein phosphatase, calcineurin, but were independent of c- jun NH2 terminal kinase. Furthermore, leptin-induced depotentiation was accompanied by a reduction in α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor rectification indicating that loss of glutamate receptor 2 (GluR2)-lacking AMPA receptors underlies this process. These data indicate that leptin reverses hippocampal LTP via a process involving calcineurin-dependent internalization of GluR2-lacking AMPA receptors which further highlights the key role for this hormone in regulating hippocampal synaptic plasticity and neuronal development.  相似文献   

9.
突触长时程增强形成机制的研究进展   总被引:13,自引:0,他引:13  
Xu L  Zhang JT 《生理科学进展》2001,32(4):298-301
高等动物脑内突触传递的可塑性是近30年来神经科学研究的热点,突触传递长时程增强(long-term potentiation,LTP)是神经元可塑性的反映,其形成主要与突触后机制有关。过去关于LTP机制的研究主要集中于N-甲基-D门冬氨酸(NMDA)受体的特征及该受体被激活后的细胞内级联反应,现认为脑内存在只具有NMDA受体而不具有α-氨基羟甲基恶唑丙酸(AMPA)受体的“静寂突触(silent synapse)”,这一概念的提出,使人们认识到AMPA受体在LTP表达的突触后机制中的重要作用。  相似文献   

10.
Regulation of AMPA receptor trafficking by N-cadherin   总被引:1,自引:0,他引:1  
Dendritic spines are dynamically regulated, both morphologically and functionally, by neuronal activity. Morphological changes are mediated by a variety of synaptic proteins, whereas functional changes can be dramatically modulated by the regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor trafficking. Although these two forms of plasticity appear to be highly coordinated, the connections between them are not fully understood. In this study the synaptic cell adhesion molecule N-cadherin was found to associate with AMPA receptors and regulate AMPA receptor trafficking in neurons. N-cadherin and beta-catenin formed a protein complex with AMPA receptors in vivo, and this association was regulated by extracellular Ca2+. In addition, these proteins co-clustered at synapses in cultured neurons. In heterologous cells and in cultured neurons, overexpression of wild-type N-cadherin specifically increased the surface expression level of the AMPA receptor subunit glutamate receptor 1 (GluR1) and this effect was reversed by a dominant-negative form of N-cadherin. Finally, GluR1 increased the surface expression of N-cadherin in heterologous cells. Importantly, recent studies suggest that N-cadherin and beta-catenin play key roles in structural plasticity in neurons. Therefore, our data suggest that the association of N-cadherin with AMPA receptors may serve as a biochemical link between structural and functional plasticity of synapses.  相似文献   

11.
大脑中神经元突触间的信号传递是由许多神经递质受体介导的。在过去,Richard L.Huganir实验室一直致力于神经递质受体功能调节的分子机制。而最近,该实验室又聚焦到大脑中一种最主要的兴奋性受体的研究——谷氨酸受体。谷氨酸受体主要可以分为两大类:AMPA受体和NMDA受体。AMPA受体主要介导了快速的兴奋性突触传递;而NMDA受体则在神经可塑性和发育中起到重要作用。实验发现,AMPA受体和NMDA受体都可以被一系列的蛋白激酶磷酸化,而磷酸化的水平则直接影响了这些受体的功能特性,包括通道电导和受体膜定位等。AMPA受体磷酸化的水平同时还在学习和记忆的细胞模型中发生改变,如长时程增强(LTP)和长时程抑制(LTD)。此外,AMPA受体中GluR1亚单位的磷酸化对于各种形式的可塑性以及空间记忆的维持有重要的作用。实验室主要研究突触部位谷氨酸受体在亚细胞水平的定位和聚集的分子机制。最近,一系列可以直接或间接与AMPA和NMDA受体相互作用的蛋白质得以发现,其中包括一个新发现的蛋白家族GRIPs(glutamate receptor interacting proteins)。GRIPs可以直接和AMPA受体的GluR2/3亚单位的C端结合。GRIPs包含7个PDZ结构域,可以介导蛋白与蛋白直接的相互连接,从而把各个AMPA受体交互连接在一起并与其他蛋白相连。另外,GluR2亚单位的c端还可以和兴奋性突触中的蛋白激酶C结合蛋白(PICK1)的PDZ结构域相互作用。另外,GluR2亚单位的C端也可以与一种参与膜融合的蛋白NSF相互作用。这些与AMPA受体相互作用的蛋白质对于受体在膜上的运输以及定位有至关重要的作用。同时,受体与PICK1和GRIP的结合对于小脑运动学习中的LTD有重要作用。总体上说,该实验室发现了一系列可以调节神经递质受体功能的分子机制,这些工作提示受体功能的调节可能是?  相似文献   

12.
Gardner SM  Takamiya K  Xia J  Suh JG  Johnson R  Yu S  Huganir RL 《Neuron》2005,45(6):903-915
A recently described form of synaptic plasticity results in dynamic changes in the calcium permeability of synaptic AMPA receptors. Since the AMPA receptor GluR2 subunit confers calcium permeability, this plasticity is thought to occur through the dynamic exchange of synaptic GluR2-lacking and GluR2-containing receptors. To investigate the molecular mechanisms underlying this calcium-permeable AMPA receptor plasticity (CARP), we examined whether AMPA receptor exchange was mediated by subunit-specific protein-protein interactions. We found that two GluR2-interacting proteins, the PDZ domain-containing Protein interacting with C kinase (PICK1) and N-ethylmaleimide sensitive fusion protein (NSF), are specifically required for CARP. Furthermore, PICK1, but not NSF, regulates the formation of extrasynaptic plasma membrane pools of GluR2-containing receptors that may be laterally mobilized into synapses during CARP. These results demonstrate that PICK1 and NSF dynamically regulate the synaptic delivery of GluR2-containing receptors during CARP and thus regulate the calcium permeability of AMPA receptors at excitatory synapses.  相似文献   

13.
Glutamate is a major excitatory neurotransmitter in brain. It engages mainly ionotropic glutamate receptors of AMPA and NMDA type. Thus, regulation of the number and properties of the receptors is crucial for correct neuronal communication, but also contributes to various forms of synaptic plasticity, namely neuronal development, learning and memory. Glutamate receptors are not static components of synapses. On the contrary, they are continuously delivered and removed from postsynaptic membranes and this process is regulated by synaptic activity, Receptor trafficking to synapses is a multi-step process, involving exit from endoplasmic reticulum, transport along dendrites, incorporation to postsynaptic membrane and finally removing them from synapses. The transport is regulated by numerous proteins, especially those bearing PDZ domains, or by receptors themselves.  相似文献   

14.
Activity coregulates quantal AMPA and NMDA currents at neocortical synapses   总被引:18,自引:0,他引:18  
AMPA and NMDA receptors are coexpressed at many central synapses, but the factors that control the ratio of these two receptors are not well understood. We recorded mixed miniature or evoked synaptic currents arising from coactivation of AMPA and NMDA receptors and found that long-lasting changes in activity scaled both currents up and down proportionally through changes in the number of postsynaptic receptors. The ratio of NMDA to AMPA current was similar at different synapses onto the same neuron, and this relationship was preserved following activity-dependent synaptic scaling. These data show that AMPA and NMDA receptors are tightly coregulated by activity at synapses at which they are both expressed and suggest that a mechanism exists to actively maintain a constant receptor ratio across a neuron's synapses.  相似文献   

15.
Expression of N-methyl d-aspartate (NMDA) receptor-dependent homosynaptic long term depression at synapses in the hippocampus and neocortex requires the persistent dephosphorylation of postsynaptic protein kinase A substrates. An attractive mechanism for expression of long term depression is the loss of surface AMPA (alpha-amino-3-hydroxy-5-methylisoxazale-4-propionate) receptors at synapses. Here we show that a threshold level of NMDA receptor activation must be exceeded to trigger a stable loss of AMPA receptors from the surface of cultured hippocampal neurons. NMDA also causes displacement of protein kinase A from the synapse, and inhibiting protein kinase A (PKA) activity mimics the NMDA-induced loss of surface AMPA receptors. PKA is targeted to the synapse by an interaction with the A kinase-anchoring protein, AKAP79/150. Disruption of the PKA-AKAP interaction is sufficient to cause a long-lasting reduction in synaptic AMPA receptors in cultured neurons. In addition, we demonstrate in hippocampal slices that displacement of PKA from AKADs occludes synaptically induced long term depression. These data indicate that synaptic anchoring of PKA through association with AKAPs plays an important role in the regulation of AMPA receptor surface expression and synaptic plasticity.  相似文献   

16.
Under standard conditions, cultured ventral spinal neurons cluster AMPA- but not NMDA-type glutamate receptors at excitatory synapses on their dendritic shafts in spite of abundant expression of the ubiquitous NMDA receptor subunit NR1. We demonstrate here that the NMDA receptor subunits NR2A and NR2B are not routinely expressed in cultured spinal neurons and that transfection with NR2A or NR2B reconstitutes the synaptic targeting of NMDA receptors and confers on exogenous application of the immediate early gene product Narp the ability to cluster both AMPA and NMDA receptors. The use of dominant-negative mutants of GluR2 further showed that the synaptic targeting of NMDA receptors is dependent on the presence of synaptic AMPA receptors and that synaptic AMPA and NMDA receptors are linked by Stargazin and a MAGUK protein. This system of AMPA receptor-dependent synaptic NMDA receptor localization was preserved in hippocampal interneurons but reversed in hippocampal pyramidal neurons.  相似文献   

17.
Most excitatory transmission in the brain is mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPA receptors). Therefore, the presence of these receptors at synapses has to be carefully regulated in order to ensure correct neuronal communication. Interestingly, AMPA receptors are not static components of synapses. On the contrary, they are continuously being delivered and removed in and out of synapses in response to neuronal activity. This dynamic behavior of AMPA receptors is an important mechanism to modify synaptic strength during brain development and also during experience-dependent plasticity. AMPA receptor trafficking involves an intricate network of protein-protein interactions that start with the biosynthesis of the receptors, continues with their transport along dendrites, and ends with their local insertion and removal from synapses. The molecular and cellular mechanisms that regulate each of these processes, and their importance for synaptic plasticity, are now starting to be unraveled.  相似文献   

18.
Lu W  Man H  Ju W  Trimble WS  MacDonald JF  Wang YT 《Neuron》2001,29(1):243-254
Long-term potentiation (LTP) of excitatory transmission in the hippocampus likely contributes to learning and memory. The mechanisms underlying LTP at these synapses are not well understood, although phosphorylation and redistribution of AMPA receptors may be responsible for this form of synaptic plasticity. We show here that miniature excitatory postsynaptic currents (mEPSCs) in cultured hippocampal neurons reliably demonstrate LTP when postsynaptic NMDA receptors are briefly stimulated with glycine. LTP of these synapses is accompanied by a rapid insertion of native AMPA receptors and by increased clustering of AMPA receptors at the surface of dendritic membranes. Both LTP and glycine-facilitated AMPA receptor insertion are blocked by intracellular tetanus toxin (TeTx), providing evidence that AMPA receptors are inserted into excitatory synapses via a SNARE-dependent exocytosis during LTP.  相似文献   

19.
Overproduction and pruning during development is a phenomenon that can be observed in the number of organisms in a population, the number of cells in many tissue types, and even the number of synapses on individual neurons. The sculpting of synaptic connections in the brain of a developing organism is guided by its personal experience, which on a neural level translates to specific patterns of activity. Activity-dependent plasticity at glutamatergic synapses is an integral part of neuronal network formation and maturation in developing vertebrate and invertebrate brains. As development of the rodent forebrain transitions away from an over-proliferative state, synaptic plasticity undergoes modification. Late developmental changes in synaptic plasticity signal the establishment of a more stable network and relate to pronounced perceptual and cognitive abilities. In large part, activation of glutamate-sensitive N-methyl-d-aspartate (NMDA) receptors regulates synaptic stabilization during development and is a necessary step in memory formation processes that occur in the forebrain. A developmental change in the subunits that compose NMDA receptors coincides with developmental modifications in synaptic plasticity and cognition, and thus much research in this area focuses on NMDA receptor composition. We propose that there are additional, equally important developmental processes that influence synaptic plasticity, including mechanisms that are upstream (factors that influence NMDA receptors) and downstream (intracellular processes regulated by NMDA receptors) from NMDA receptor activation. The goal of this review is to summarize what is known and what is not well understood about developmental changes in functional plasticity at glutamatergic synapses, and in the end, attempt to relate these changes to maturation of neural networks.  相似文献   

20.
Excitatory synaptic transmission in the mammalian brain is mediated primarily by alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors that are thought to be co-localized at individual synapses. However, recent electrophysiological and anatomical data suggest that the synaptic localization of AMPA and NMDA receptors may be independently regulated by neural activity. These data are reviewed here and the implications of these findings for the mechanisms underlying synaptic plasticity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号