首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
The model of genetic hitchhiking predicts a reduction in sequence diversity at a neutral locus closely linked to a beneficial allele. In addition, it has been shown that the same process results in a specific pattern of correlations (linkage disequilibrium) between neutral polymorphisms along the chromosome at the time of fixation of the beneficial allele. During the hitchhiking event, linkage disequilibrium on either side of the beneficial allele is built up whereas it is destroyed across the selected site. We derive explicit formulas for the expectation of the covariance measure D and standardized linkage disequilibrium sigma 2D between a pair of polymorphic sites. For our analysis we use the approximation of a star-like genealogy at the selected site. The resulting expressions are approximately correct in the limit of large selection coefficients. Using simulations we show that the resulting pattern of linkage disequilibrium is quickly-i.e., in <0.1N generations-destroyed after the fixation of the beneficial allele for moderately distant neutral loci, where N is the diploid population size.  相似文献   

3.
A critically important challenge in empirical population genetics is distinguishing neutral nonequilibrium processes from selective forces that produce similar patterns of variation. We here examine the extent to which linkage disequilibrium (i.e., nonrandom associations between markers) improves this discrimination. We show that patterns of linkage disequilibrium recently proposed to be unique to hitchhiking models are replicated under nonequilibrium neutral models. We also demonstrate that jointly considering spatial patterns of association among variants alongside the site-frequency spectrum is nonetheless of value. Through a comparison of models of equilibrium neutrality, nonequilibrium neutrality, equilibrium hitchhiking, nonequilibrium hitchhiking, and recurrent hitchhiking, we evaluate a linkage disequilibrium (LD) statistic (omega(max)) that appears to have power to identify regions recently shaped by positive selection. Most notably, for demographic parameters relevant to non-African populations of Drosophila melanogaster, we demonstrate that selected loci are distinguishable from neutral loci using this statistic.  相似文献   

4.
The Effect of a Selected Locus on Linked Neutral Loci   总被引:23,自引:8,他引:15       下载免费PDF全文
Glenys Thomson 《Genetics》1977,85(4):753-788
The effects produced on linked neutral loci as a selected locus evolves towards its equilibrium value are considered. Significant effects on the neutral loci arise if the recombination fraction between the neutral and selected loci is smaller than the order of magnitude of the selective differences at the selected locus. The effect on gene frequencies at the neutral loci, that is, the hitchhiking effect, is determined, as well as the linkage disequilibrium generated by this hitchhiking effect. One of the more important findings is that significant disequilibrium can be generated between two neutral loci by the evolution of a linked selected locus. Consideration is given to the problem of determining how the effect of selection operating in natural populations can be detected, the question of the establishment of inversions in populations, and also to the nonequilibrium properties of populations.  相似文献   

5.
Hitchhiking: A Comparison of Linkage and Partial Selfing   总被引:5,自引:2,他引:3       下载免费PDF全文
Philip W. Hedrick 《Genetics》1980,94(3):791-808
Genetic hitchhiking occurs when alleles at unselected loci are changed in frequency because of an association with alleles at a selected locus. This association may be mediated either by linkage or partial selfing (inbreeding) and can affect the gene frequency and gametic disequilibrium at the neutral loci. Hitchhiking from partial selfing (unlinked loci) occurs more quickly than linkage hitchhiking and generally has a greater effect. In addition, partial-selfing hitchhiking can cause increases or changes in sign in gametic disequilibrium between neutral loci. The effects of the two types of hitchhiking with different levels of dominance, zygotic frequencies and number of selected loci are also examined. The general conditions for linkage and partial-selfing hitchhiking are outlined and the implications of hitchhiking are discussed for marker or electrophoretic loci.  相似文献   

6.
The hitchhiking effects of a selected locus upon the dynamics of the pairwise association,D nn between two neutral loci is examined analytically for the special case where at least one of the neutral loci is in linkage equilibrium with the selected locus. The results apply approximately whenever the product of the pairwise associations between the selected locus and each neutral locus is negligible with respect to the three-way linkage disequilibrium. It is shown that precisely four broad classes of trajectories are possible, whether the selected locus is between (nsn) or to one side (snn) of the neutral loci, and whatever the mode of selection operating.D nn may: (1) decay rapidly to zero, at a rate faster in each generation than that expected for two isolated neutral loci; (2) monotonically decay to zero at a rate which is slower in every generation than under the usual neutral regime; (3) increase initially and/or in intermediate periods before eventually slowly decaying to zero; or (4) exhibit type 1 behavior in the first segment of the trajectory and either type 2 or 3 behavior in the subsequent generations, with the transition marked by a change in sign. The nature of a given trajectory is largely determined by the direction of gene frequency change at the selected locus, and the initial signs of bothD nn and the three-way linkage disequilibrium.The single most important consequence of these results is that there is no simple relation between the amount of pairwise association between two neutral markers and the recombination fraction between them. Several factors influencing the magnitude of the hitchhiking effect are also examined. It is shown that, all else being equal, the greater the three-way linkage disequilibrium, the greater the departure ofD nn from the expected neutral dynamic. Increased recombination among the loci reduces the hitchhiking effect onD nn . The dependence of the behavior upon the exact position of the selected locus is also determined both within and betweennsn andsnn chromosomal systems. An interesting discovery is that given equivalentnsn andsnn systems, with each having the same recombination between their two neutral loci,D nn will deviate more from the standard neutral dynamic in thesnn system if its selected locus is sufficiently tightly linked to the neutral loci.  相似文献   

7.
Recombination is expected to reduce the effect of selection on the extent of linkage disequilibrium (LD), but the impact that recombinational hotspots have on sites linked to selected mutations has not been investigated. We empirically determine chromosomal linkage phase for 5.2 kb spanning the beta -globin gene and hotspot. We estimate that the HbC mutation, which is positively selected because of malaria, originated <5,000 years ago and that selection coefficients are 0.04-0.09. Despite strong selection and the recent origin of the HbC allele, recombination (crossing-over or gene conversion) is observed within 1 kb 5' of the selected site on more than one-third of the HbC chromosomes sampled. The rapid decay in LD upstream of the HbC allele demonstrates the large effect the ss-globin hotspot has in mitigating the effects of positive selection on linked variation.  相似文献   

8.
Genes under divergent selection flow less readily between populations than other loci. This observation has led to verbal “divergence hitchhiking” models of speciation in which decreased interpopulation gene flow surrounding loci under divergent selection can generate large regions of differentiation within the genome (genomic islands). The efficacy of this model in promoting speciation depends on the size of the region affected by divergence hitchhiking. Empirical evidence is mixed, with examples of both large and small genomic islands. To address these empirical discrepancies and to formalize the theory, we present mathematical models of divergence hitchhiking, which examine neutral differentiation around selected sites. For a single locus under selection, regions of differentiation do not extend far along a chromosome away from a selected site unless both effective population sizes and migration rates are low. When multiple loci are considered, regions of differentiation can be larger. However, with many loci under selection, genome‐wide divergence occurs and genomic islands are erased. The results show that divergence hitchhiking can generate large regions of differentiation, but that the conditions under which this occurs are limited. Thus, speciation may often require multifarious selection acting on many, isolated and physically unlinked genes. How hitchhiking promotes further adaptive divergence warrants consideration.  相似文献   

9.
Over the last decade, surveys of DNA sequence variation in natural populations of several Drosophila species and other taxa have established that polymorphism is reduced in genomic regions characterized by low rates of crossing over per physical length. Parallel studies have also established that divergence between species is not reduced in these same genomic regions, thus eliminating explanations that rely on a correlation between the rates of mutation and crossing over. Several theoretical models (directional hitchhiking, background selection, and random environment) have been proposed as population genetic explanations. In this study samples from an African population (n = 50) and a European population (n = 51) were surveyed at the su(s) (1955 bp) and su(w(a)) (3213 bp) loci for DNA sequence polymorphism, utilizing a stratified SSCP/DNA sequencing protocol. These loci are located near the telomere of the X chromosome, in a region of reduced crossing over per physical length, and exhibit a significant reduction in DNA sequence polymorphism. Unlike most previously surveyed, these loci reveal substantial skews toward rare site frequencies, consistent with the predictions of directional hitchhiking and random environment models and inconsistent with the general predictions of the background selection model (or neutral theory). No evidence for excess geographic differentiation at these loci is observed. Although linkage disequilibrium is observed between closely linked sites within these loci, many recombination events in the genealogy of the sampled alleles can be inferred and the genomic scale of linkage disequilibrium, measured in base pairs between sites, is the same as that observed for loci in regions of normal crossing over. We conclude that gene conversion must be high in these regions of low crossing over.  相似文献   

10.
Two-locus population genetic models are analyzed to evaluate the utility of restriction fragment length polymorphisms for purposes of genetic counseling. It is shown that the linkage disequilibrium between a neutral marker and a tightly linked overdominant mutant will increase rapidly as the mutant moves to its polymorphic equilibrium. The linkage disequilibrium decays for deleterious recessive mutants. Two measures involving the linkage disequilibrium are investigated to determine how much information the transmission of the neutral marker provides about the transmission of the selected gene. In certain kinds of matings, where the parental two-locus genotypes and linkage phases are known, it is possible to determine whether or not a progeny is homozygous for the selected gene on the basis of the fetal genotype at the marker locus. A quantity of primary interest is the fraction of matings between individuals heterozygous for the selected gene in which exact diagnosis can be made in this way. The expected proportion of such matings, taken over all two-locus matings involving heterozygotes at the selected locus, is calculated as a function of the gene frequencies at the two loci and the linkage disequilibrium between them. This expected value is maximized when the linkage disequilibrium is at its maximum in absolute value. Fewer than half of all matings are informative if the linkage disequilibrium is small in magnitude or if the gene frequencies at the two loci are quite different. Consideration is also given to various conditional measures of association that may be useful when the parental two-locus genotypes are unknown. The results suggest that the utility of tightly linked neutral marker genes in predicting the transmission of a selected gene is generally less when selection acts against a recessive gene than for overdominant selection.  相似文献   

11.
12.
Pavy N  Namroud MC  Gagnon F  Isabel N  Bousquet J 《Heredity》2012,108(3):273-284
In plants, knowledge about linkage disequilibrium (LD) is relevant for the design of efficient single-nucleotide polymorphism arrays in relation to their use in population and association genomics studies. Previous studies of conifer genes have shown LD to decay rapidly within gene limits, but exceptions have been reported. To evaluate the extent of heterogeneity of LD among conifer genes and its potential causes, we examined LD in 105 genes of white spruce (Picea glauca) by sequencing a panel of 48 haploid megagametophytes from natural populations and further compared it with LD in other conifer species. The average pairwise r(2) value was 0.19 (s.d.=0.19), and LD dropped quickly with a half-decay being reached at a distance of 65 nucleotides between sites. However, LD was significantly heterogeneous among genes. A first group of 29 genes had stronger LD (mean r(2)=0.28), and a second group of 38 genes had weaker LD (mean r(2)=0.12). While a strong relationship was found with the recombination rate, there was no obvious relationship between LD and functional classification. The level of nucleotide diversity, which was highly heterogeneous across genes, was also not significantly correlated with LD. A search for selection signatures highlighted significant deviations from the standard neutral model, which could be mostly attributed to recent demographic changes. Little evidence was seen for hitchhiking and clear relationships with LD. When compared among conifer species, on average, levels of LD were similar in genes from white spruce, Norway spruce and Scots pine, whereas loblolly pine and Douglas fir genes exhibited a significantly higher LD.  相似文献   

13.
The structure of linkage disequilibrium around a selective sweep   总被引:1,自引:0,他引:1       下载免费PDF全文
McVean G 《Genetics》2007,175(3):1395-1406
The fixation of advantageous mutations by natural selection has a profound impact on patterns of linked neutral variation. While it has long been appreciated that such selective sweeps influence the frequency spectrum of nearby polymorphism, it has only recently become clear that they also have dramatic effects on local linkage disequilibrium. By extending previous results on the relationship between genealogical structure and linkage disequilibrium, I obtain simple expressions for the influence of a selective sweep on patterns of allelic association. I show that sweeps can increase, decrease, or even eliminate linkage disequilibrium (LD) entirely depending on the relative position of the selected and neutral loci. I also show the importance of the age of the neutral mutations in predicting their degree of association and describe the consequences of such results for the interpretation of empirical data. In particular, I demonstrate that while selective sweeps can eliminate LD, they generate patterns of genetic variation very different from those expected from recombination hotspots.  相似文献   

14.
Evolution of recombination due to random drift   总被引:5,自引:0,他引:5       下载免费PDF全文
Barton NH  Otto SP 《Genetics》2005,169(4):2353-2370
In finite populations subject to selection, genetic drift generates negative linkage disequilibrium, on average, even if selection acts independently (i.e., multiplicatively) upon all loci. Negative disequilibrium reduces the variance in fitness and hence, by Fisher's (1930) fundamental theorem, slows the rate of increase in mean fitness. Modifiers that increase recombination eliminate the negative disequilibria that impede selection and consequently increase in frequency by "hitchhiking." Thus, stochastic fluctuations in linkage disequilibrium in finite populations favor the evolution of increased rates of recombination, even in the absence of epistatic interactions among loci and even when disequilibrium is initially absent. The method developed within this article allows us to quantify the strength of selection acting on a modifier allele that increases recombination in a finite population. The analysis indicates that stochastically generated linkage disequilibria do select for increased recombination, a result that is confirmed by Monte Carlo simulations. Selection for a modifier that increases recombination is highest when linkage among loci is tight, when beneficial alleles rise from low to high frequency, and when the population size is small.  相似文献   

15.
X. Li  S. Yang  K. Dong  Z. Tang  K. Li  Z. Wang  B. Liu 《Animal genetics》2017,48(5):600-605
Selection affects the patterns of linkage disequilibrium (LD) around the site of a beneficial allele with an increase in LD among the hitchhiking alleles. Comparing the differences in regional LD between pig populations could help to identify putative genomic regions with potential adaptations for economic traits. In this study, using Illumina Porcine SNP60K BeadChip genotyping data from 207 Chinese indigenous, 117 South American village and 408 Large White pigs, we estimated the variation of genome‐wide LD between populations using the varld program. The top 0.1% standardized VarLD scores were used as a criterion for all comparisons, and compared with LD blocks, a total of four selection signatures on Sus scrofa chromosome (SSC) 7, 9, 13 and 14 were identified in all populations. These signatures overlapped with quantitative trait loci for linoleic acid content, age at puberty, number of muscle fibers per unit area, hip structure and body weight traits in pigs. Among them, one of the signatures (56.5–56.6 Mb on SSC7) in Large White pigs harbored the ADAMTSL3 gene, which is known to affect body length. The findings of this study seem to point toward recent selection in different pig populations. Further investigations are encouraged to confirm the selection signatures detected by varld in the present study.  相似文献   

16.
Jones DA  Wakeley J 《Genetics》2008,180(2):1251-1259
In a 2007 article, McVean studied the effect of recombination on linkage disequilibrium (LD) between two neutral loci located near a third locus that has undergone a selective sweep. The results demonstrated that two loci on the same side of a selected locus might show substantial LD, whereas the expected LD for two loci on opposite sides of a selected locus is zero. In this article, we extend McVean's model to include gene conversion. We show that one of the conclusions is strongly affected by gene conversion: when gene conversion is present, there may be substantial LD between two loci on opposite sides of a selective sweep.  相似文献   

17.
Glacial and interglacial cycles are considered to have caused the fragmentation and admixture of populations in many organisms. A simple model incorporating such periodic changes of the population structure is analysed in order to investigate the behaviour of neutral genetic variation at one and two loci. The equilibrium is reached very quickly in terms of cycles if the length of a cycle is long, as would be expected of the glaciation cycles. Heterozygosity and linkage disequilibrium are shown to depend on the length of time of the fragmented and admixed phases, population sizes, and number (n) of subpopulations in the fragmented phase. If the population size is small in the fragmented phase and its duration is long, the squared correlation coefficient of two loci (a measure of linkage disequilibrium) just after the admixture is approximated by 1/(n-1) for n > 1. After admixture, the correlation decays at a rate of approximately twice the recombination rate. Therefore, if post-glaciation admixture created linkage disequilibrium, we expect to observe linkage disequilibrium even between moderately linked loci, and its decay pattern along the chromosome is very different from that in a random mating population at equilibrium. This is especially true in organisms with long generation times such as trees.  相似文献   

18.
The ``hitchhiking Effect' Revisited   总被引:67,自引:18,他引:49       下载免费PDF全文
N. L. Kaplan  R. R. Hudson    C. H. Langley 《Genetics》1989,123(4):887-899
The number of selectively neutral polymorphic sites in a random sample of genes can be affected by ancestral selectively favored substitutions at linked loci. The degree to which this happens depends on when in the history of the sample the selected substitutions happen, the strength of selection and the amount of crossing over between the sampled locus and the loci at which the selected substitutions occur. This phenomenon is commonly called hitchhiking. Using the coalescent process for a random sample of genes from a selectively neutral locus that is linked to a locus at which selection is taking place, a stochastic, finite population model is developed that describes the steady state effect of hitchhiking on the distribution of the number of selectively neutral polymorphic sites in a random sample. A prediction of the model is that, in regions of low crossing over, strongly selected substitutions in the history of the sample can substantially reduce the number of polymorphic sites in a random sample of genes from that expected under a neutral model.  相似文献   

19.
Hitchhiking effects of advantageous mutations have been invoked to explain reduced polymorphism in regions of low crossing-over in Drosophila. Besides reducing DNA heterozygosity, hitchhiking effects should produce strong linkage disequilibrium and a frequency spectrum skewed toward an excess of rare polymorphisms (compared to the neutral expectation). We measured DNA polymorphism in a Zimbabwe population of D. melanogaster at three loci, yellow, achaete, and suppressor of forked, located in regions of reduced crossing-over. Similar to previously published surveys of these genomic regions in other populations, we observed low levels of nucleotide variability. However, the frequency spectrum was compatible with a neutral model, and there was abundant evidence for recombination in the history of the yellow and ac genes. Thus, some aspects of the data cannot be accounted for by a simple hitchhiking model. An alternative hypothesis, background selection, might be compatible with the observed patterns of linkage disequilibrium and the frequency spectrum. However, this model cannot account for the observed reduction in nucleotide heterozygosity. Thus, there is currently no satisfactory theoretical model for the data from the tip and base of the X chromosome in D. melanogaster.   相似文献   

20.
Genetic diversity is unusually high at loci in the S-locus region of the self-incompatible species of the flowering plant, Arabidopsis lyrata, not just in the S loci themselves, but also at two nearby loci. In a previous study of a single natural population from Iceland, we attributed this elevated polymorphism to linkage disequilibrium (LD) between variants at loci close to the S locus and the S alleles, which are maintained in the population by balancing selection. With the four S-flanking loci whose diversity we previously studied, we could not determine the extent of the region linked to the S loci in which neutral sites are affected. We also could not exclude the possibility of a population bottleneck, or of admixture, as causes of the LD. We have now studied four more distant loci flanking the S-locus region, and more populations, and we analyze the results using a theoretical model of the effect of balancing selection on diversity at linked neutral sites within and between different functional S-allelic classes. In the model, diversity is a function of the number of selectively maintained alleles and the recombination distances from the selectively maintained sites. We use the model to estimate the number of different functional S alleles, their turnover rate, and recombination rates between the S-locus region and other loci. Our estimates suggest that there is a small region of very low recombination surrounding the S-locus region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号