首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Two types of experiments were conducted to determine the relationship of changes in blood luteinizing hormone (LH) and testosterone in bulls given prostaglandin F (PGF). Episodic surges of LH and testosterone occurred in tandem, apparently at random intervals, on the average once during the 8-hr period after bulls were given saline. In contrast, after sc injection of 20 mg PGF, blood serum testosterone increased synchronously to a peak within 90 minutes four-fold greater than pre-injection values, and the testosterone surges were prolonged about three-fold compared to those in controls. Each of the PGF-induced surges of testosterone was preceded by a surge of blood serum LH which persisted for about 45 minutes and peaked at about 3 ng/ml. In a second experiment, PGF was infused (iv, 0.2 mg/min) for 20 hr; blood plasma testosterone increased from 7.0 ± 0.6 to 16.0±1.5 ng/ml within 2.5 hr and remained near this peak for 10 hr. Then testosterone gradually declined to about 9 ng/ml at the conclusion of the 20-hr infusion. These changes in testosterone were paralleled by similar changes in blood plasma LH, although LH declined 3 hr earlier than testosterone. Random episodic peaks of blood plasma LH and testosterone typical of untreated bulls resumed within 8 hr after conclusion of PGF infusion. In both experiments, the surge of testosterone after PGF was preceded by increased blood LH. We conclude that increased LH after administration of PGF probably caused the increased testosterone. However the mechanisms of these actions of PGF remain to be determined.  相似文献   

2.
《Theriogenology》2016,85(9):1530-1535
Insulin-like peptide 3 (INSL3) is a major secretory product of testicular Leydig cells. The mechanism of acute regulation of INSL3 secretion is still unknown. The present study was undertaken in pubertal beef bulls to (1) determine the temporal relationship of pulsatile secretion among LH, INSL3, and testosterone and (2) monitor acute regulation of INSL3 secretion by LH using GnRH analogue and hCG. Blood samples were collected from Japanese Black beef bulls (N = 6) at 15-minute intervals for 8 hours. Moreover, blood samples were collected at −0.5, 0, 1, 2, 3, 4, 5, and 6 hours after GnRH treatment and −0.5, 0, 2, 4, and 8 hours on the day of treatment (Day 0), and Days 1, 2, 4, 8, and 12 after hCG treatment. Concentrations of LH, INSL3, and testosterone determined by EIAs indicated that secretion in the general circulation was pulsatile. The frequency of LH, INSL3, and testosterone pulses was 4.7 ± 0.9, 3.8 ± 0.2, and 1.0 ± 0.0, respectively, during the 8-hour period. Seventy percent of these INSL3 pulses peaked within 1 hour after a peak of an LH pulse had occurred. The mean increase (peak per basal concentration) of testosterone pulses was higher (P < 0.001) than that of INSL3 pulses. After GnRH treatment, LH concentrations increased (P < 0.01) dramatically 1 hour after treatment and remained high (P < 0.05) until the end of sampling, whereas an elevated (P < 0.05) INSL3 concentration occurred at 1, 2, 5, and 6 hours after treatment. Testosterone concentrations increased (P < 0.01) 1 hour after the treatment and remained high until the end of sampling. After hCG treatment, an increase of INSL3 concentration occurred at 2 and 4 hours, and Days 2, 4, and 8 after treatment (P < 0.05), whereas in case of testosterone, concentrations remained high (P < 0.01) until Day 8 after treatment. The increase (maximum per pretreatment concentration) of INSL3 concentrations after injecting GnRH or hCG was much lower (P < 0.001) than that of testosterone. In conclusion, secretion of INSL3 in blood of bulls occurred in a pulsatile manner. We inferred an acute regulation of INSL3 by LH in bulls because INSL3 concentrations increased immediately after endogenous and exogenous LH stimulation. The increase of INSL3 concentrations by LH was much lower than that of testosterone in bulls.  相似文献   

3.
Interrelationships among peripheral blood concentrations of corticosteroids (CS), luteinizing hormone (LH) and testosterone (T) were evaluated over a 24-hr period in four Angus bulls (18 months of age and 450 kg in body weight). Concentrations of LH and T were determined by radioimmunoassay and concentrations of CS by competitive protein binding assay of blood samples collected via jugular cannula at hourly intervals for 24 consecutive hr. A positive temporal relationship was observed between LH and T as significant positive correlations were obtained between concentrations of LH at one hour and concentrations of T at the subsequent hour in 3 of 4 bulls. Although LH peaks preceded T peaks by 1 hr, variation in this temporal relationship was observed as LH peaks occurred which were not accompanied by T peaks in some bulls. LH peaks were usually preceded by basal or declining concentrations of CS and prolonged elevations in concentrations of CS were often coincident with basal concentrations of LH and T. Negative correlations were obtained between concentrations of CS at one hour and concentrations of LH and T at the subsequent hour. These data describe the positive regulatory role of LH in testicular T production in the bull and suggest that alterations in endogenous concentrations of CS may influence peripheral concentrations of LH and T in the bull.  相似文献   

4.
The effects of unilateral castration and vasectomy on the weight and microscopic appearance of the contralateral testis and on the blood levels of testosterone, LH and FSH, were studied in German Fleckvieh bulls. Testicular weights were higher in hemicastrated bulls (P < 0.01) and unilaterally vasectomized bulls (P < 0.05) when compared to controls, 377 ± 45g (x ± s, N = 4 and 281 ± 12g, N = 4 vs 226 ± 38g, N = 3, respectively.Testosterone concentrations were higher during the weeks 14 to 22 after surgery in both treated groups. LH levels were not different from controls, but FSH levels increased significantly (P < 0.01) two weeks after hemicastration and unilateral vasectomy.Different factors appear to regulate the LH and the FSH concentrations in bulls. The increase of FSH after hemicastration may indicate a reduced production of inhibin or an inhibin-like substance from the testes, and a similar increase after unilateral vasectomy suggests that this substance may be resorbed distal to the testes.  相似文献   

5.
Plasma hormone levels were examined in 4 mature Zebu bulls of normal libido (HL) and 4 which were sexually inactive (LL). When used in an artificial insemination programme the 8 bulls had similar fertility. Basal levels of LH and testosterone (T) estimated from 8 sequential blood samples at 30 minute intervals were not different in HL and LL bulls. Exposure of the animals to an estrous cow did not stimulate LH release. Following sexual stimulation plasma T levels actually decreased by an average (±S.E) of 2.9 (±1.9) ng/ml in the HL group and increased by 3.9 (±1.6) ng/ml in the LL group. An injection of 1 mg GnRH (Hoechst) caused LH release of similar magnitude in HL and LL bulls. The elevation of plasma T which followed GnRH injection was significantly larger in HL bulls.Low libido was not associated with a deficiency of basal LH or T, nor with the ability of the pituitary to respond to GnRH.  相似文献   

6.
Half-life (t12), volume of distribution (Vd)_and total body clearance (TBC) of 13, 14-dihydro-15-keto PGF (PGFM) were measured in order to determine optimal sampling frequency for accurate measurement of PGFM. Three yearling Holstein bulls (349.2 ± 6.7 kg) and 3 yearling Holstein steers (346.7 ± 7.0 kg) were utilized in a 3 × 3 Latin square design. Animals were given 0, 25 or 50 μg PGF I.V.; blood samples collected every 2 min and plasma PGFM determined. The t12, Vd and TBC of PGFM were 2.3 ± .2 min, 43.3 ± 3.3 liters and 13.7 ± 1.9 liters/min, respectively and were similar for 25 and 50 μg doses. To determine the relationship between endogenous PGFM and LH secretion in bulls, blood samples were collected every 2 min for 12 h in 4 yearling Angus bulls (489.1 ± 11.6 kg). All animals elicited at least one LH surge and PGFM concentrations were measured in samples coincident with the LH surge. Mean plasma PGFM concentrations were greater prior to the LH surge than during the LH surge. In addition, mean plasma PGFM concentration and frequency of PGFM peaks appeared to increase prior to the LH surge suggesting an association between PGFM and pulsatile LH secretion in the bull.  相似文献   

7.
Pituitary gonadotropic hormones were assayed in 65 Holstein bulls from 7 days to 16 months. Pituitary LH concentration and content at 2, 4, 8 and 16 months increased (P<.01) with age, while FSH content increased with age (P<.01) but was lower in UC bulls at 2, 4 and 8 months and higher at 16 months (A x UC, P<.01) as compared to intact bulls. In five samples of plasma collected at 90-minute intervals, one day each month from 1 to 15 months in 10 of the bulls killed at 16 months, LH concentration and variance changed (P<.01) with age reaching maxima at 4 and 3 months respectively. Plasma testosterone concentration and variance changed (P<.01) with age, reaching maxima at 10 and 9 months respectively. In the other 10 bulls killed at 16 months, assays of plasma collected before and after exposure to a teaser showed that stimulation increased LH by 20 minutes after exposure but LH declined by 60 minutes while testosterone was increased 20 (P<.05) and 60 (P<.01) minutes after exposure.  相似文献   

8.
Male farm-reared alligators were injected with mammalian FSH, LH, hCG, prolactin, or saline. A blood sample was taken immediately prior to injection of hormone and at 24 h postinjection. Testosterone concentrations in the plasma were then determined by radioimmunoassay. Only the alligators injected with FSH showed a significant increase in plasma testosterone. In a second series of experiments male alligators were injected with ovine LH, ovine FSH, or saline and bled at 0, 2, 4, 16, and 24 h postinjection. Again, only the alligators injected with FSH showed significant increases in plasma testosterone at 16 and 24 h postinjection. Mammalian LH does not appear to stimulate testosterone secretion in male alligators.  相似文献   

9.
Levels of peripheral plasma testosterone and LH were studied in 4 bulls hourly during a 12 hr. sampling period at 5 times of the year. The average plasma testosterone levels were significantly lower in October (1.8 ng/ml, Ρ < 0.001) and December (2.5 ng/ml, Ρ < 0.05) than in February, June and August (3.5, 3.7 and 3.7 ng/ml respectively). LH showed a slight fluctuation during the day, with values ranging between 0.8 and 3.8 ng/ml, but underwent no significant seasonal variation. A significant increase in average plasma testosterone was observed 1 hr. after the LH peaks (P < 0.001).  相似文献   

10.
Testosterone (T) and luteinizing hormone (LH) in the peripheral plasma of 6 young postpubertal (52 weeks of age) bulls were measured by radioimmunoassay. For 3 bulls blood samples were collected at half-hour intervals for 6 hours one day before dexamethasone (DXM) injection (20 mg) and two days after. For the 3 others blood collection occurred two days before injection and two days after. On the days before treatment, T and LH concentrations fluctuated similarly to what was previously observed. After treatment LH decreased rapidly and remained between 0.25 and 1.0 ng/ml until the end of the experiment. We observed a small peak of T (between 1.9 and 6.1 ng/ml depending on the animal) immediately after DXM injection; this peak was followed by a decrease to low values (0.25 to 0.5 ng/ml) as soon as 4 hours after injection. It is concluded that DXM suppresses the testosterone secretion. Since we observed a large decrease of LH, we postulate that DXM lowers LH release and therefore indirectly lowers the T synthesis and/or release.  相似文献   

11.
Prostaglandin F (PGF) concentrations in genital tract secretions of conscious dairy bulls were determined by radioimmunoassay procedures and compared with peripheral blood plasma levels. The mean (± SD) PGF concentration of coccygeal venous blood plasma from four bulls was 0.14 ± 0.05 ng/ml. Values for rete testis fluid and seminal plasma were the same, namely 0.17 ± 0.01 ng/ml (n = 5) and 0.17 ± 0.02 ng/ml (n = 4), respectively. However, the PGF level in cauda epididymal plasma was 1.61 ± 0.41 ng/ml, or over 8 to 10 times (P < 0.01) the concentration of any other fluid studied.Added PGF had no effect on the endogenous oxygen consumption of washed cauda epididymal spermatozoa or on the oxidative and glycolytic activities of washed ejaculated spermatozoa in vitro. No evidence was obtained suggesting that the prostaglandin may interact with the stimulatory effect of added testosterone or phosphatidylinositol (PI) on the motility, respiration or glucose uptake of ejaculated spermatozoa.  相似文献   

12.
Investigations were undertaken to study the effect of in vitro addition of testosterone (0.3 mM) on the release of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) by pituitary-hypothalamus complex (PHC) or the whole pituitary (PI) incubated for 72 hr, with incubation media changed every 24 hr. PHC or PI were from adult intact or castrated (7 days post castration) rats. The tissues incubated with or without testosterone were further exposed to 0.1 nM luteinizing hormone-releasing hormone (LHRH) for 4 hr. Incubation media and the pituitary were analyzed for PRL and gonadotrophin content. While PHC from normal and castrated rats released increasing amounts of LH with diminishing amounts of FSH and PRL at different periods of incubation, PI showed a decrease in the amounts of gonadotrophin and PRL released. Co-incubation of PHC or PI of intact or castrated rats with testosterone stimulated the release of LH and FSH during the first or second-24 hr incubation but inhibited the release of PRL in all the three incubations of 24 hr each. The extent of PRL inhibition increased with increasing incubation period. Testosterone had no effect on LHRH induced release of PRL but inhibited LHRH induced release of LH and FSH by pituitaries from constructs of normal rats. Testosterone reduced intrapituitary contents of PRL and FSH of intact and castrated rats. The data are interpreted to suggest that hypothalamus is essential for the maintenance of functional pituitary in vitro and that intrinsic differences exist in mechanisms regulating the secretion of LH, FSH and PRL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Reproductive complications for both male and female zoo-managed African elephants (Loxodonta africana) contribute to the rapidly declining population. In zoo-managed bull elephants, few studies have explored the potential physiological, physical, social, and environmental factors that influence bull fertility, particularly, androgen production. Testosterone is the essential steroid hormone for male sexual maturation and inadequate concentrations can be detrimental for spermatogenesis. Testosterone, fecal glucocorticoid metabolites, leptin, glucose, insulin, and triglycerides were analyzed from weekly fecal and blood serum samples taken over 6 months from six zoo-managed African elephant bulls (10–19 years of age). Testosterone levels were compared to endocrine factors, weekly social and environmental variables, daily musth signs, and body condition scores (BCS). The glucose-to-insulin ratio (G:I) was the only physiological biomarker found to be positively associated with testosterone. Predictive physical variables included Musth Score (+) and Moderate Exercise (+). Bulls with BCS signifying overweight (BCS 4) had lower testosterone (36.6 ± 1.6 ng/g fecal extraction [FE]) than bulls with healthy BCS 3; 51.2 ± 4.9 ng/g FE). Numerous social variables influenced testosterone concentrations, including Total Contact Day (+), Female Interaction Day (+), Indirect Contact Day (+), Indirect Contact Night (+) and Total No Contact (−). Both percentage of Time Outdoor and Time Mixed positively influenced testosterone, whereas testosterone decreased for percentage of Time Indoors. Each additional daily browse opportunity increased testosterone by approximately 7 ng/g FE. In managed care, the emphasis should be placed on optimizing these predictors of testosterone production to promote bull reproductive health.  相似文献   

14.
The effect of storage time and temperature of porcine blood prior to quantitation of hormone concentrations by radioimmunoassay (RIA) was evaluated. Blood from each of four luteal phase gilts was used to determine cortisol (CS) and progesterone (P) concentrations, while blood from each of four ovariectomized gilts and each of four lactating sows was used to determine luteinizing hormore (LH) and prolactin (PRL) concentrations, respectively. Blood was collected via jugular puncture from each animal within a 30-sec time period and placed into 18 heparinized and 18 nonheparinized tubes. One sample with and without heparin was stored in ice water (4°C) or at 28°C for 0.25, 2, 4, 6, 8, 12, 24, 36 or 48 hours. After storage, blood was centrifuged at 4°C and plasma or serum was collected and stored at ?20°C until quantitated by RIA. There were no differences (P>0.05) between plasma and serum concentrations (X ± SE, ng/ml) of CS (26.9 ± 0.8 vs 28.5 ± 0.8), P (24.7 ± 0.7 vs 24.8 ± 0.8), LH (2.1 ± 0.1 vs 2.2 ± 0.1) or PRL (53.2 ± 2.3 vs 52.6 ± 2.1). Similarly, storage temperature (4 vs 28°C) did not affect the concentrations of P (25.7 ± 0.8 vs 23.9 ± 0.7), LH (2.2 ± 0.1 vs 2.2 ± 0.1) or PRL (53.7 ± 2.1 vs 53.2 ± 2.3). Howver, CS concentrations decreased (P<0.05) from 28.5 ± 0.5 (4°C) to 26.9 ± 0.8 ng/ml (28°C). There was an animla x time interaction for CS concentration when plasma and serum were stored at both 4°C (P<0.001) and 28°C (P<0.003). There was also and animal x time interaction (P<0.03) for LH concentrations. The P and PRL concentrations decreased linearly by 0.0615 ng/hr (P<0.001) and 0.0625 ng/hr (P<0.004), respectively, with increased storage time.  相似文献   

15.
The effect of bromocriptine on concentrations of luteinizing hormone (LH) and prolactin (PRL) as well as the rhythmicity of episodic profiles of plasma LH were investigated in twelve ovariectomized ewes exposed to 3-day trials during which ambient temperature/humidity conditions maintained either normothermia or induced an average of 1.4°C increase of rectal temperature (hyperthermia). In 24 of 48 trials, ewes received twice daily subcutaneous injections of 1 mg bromocriptine beginning at 1900 hr on day 1. Plasma PRL and LH were measured at 10-min intervals for 4 hr on days 2 and 3. Bromocriptine significantly decreased plasma PRL (65 ± 6 vs 5 ± 1 ng/ml), mean plasma LH (11.0 ± 0.2 vs 6.5 ± 0.2 ng/ml) and tended (P < 0.1) to decrease LH rhythmicity. In hyperthermic placebo-treated ewes, plasma PRL was increased (65 ± 6 vs 212 ± 20 ng/ml) and mean LH was decreased (11.0 ± 0.2 vs 8.2 ± 0.2 vg/ml) compared to normothermic, placebo-treated ewes, but there was no effect of hyperthermia on LH rhythmicity. Bromocriptine treatment of hyperthermic ewes decreased mean PRL (212 ± 20 vs 32 ± 9 ng/ml) on both days of sampling although mean levels were significantly higher on day 2 than on day 3(54 ± 14 vs 10 ± 6 ng/ml). Perhaps because mean LH was already inhibited in hyperthermic ewes, bromocriptine did not further decrease mean LH (8.2 ± 0.2 vs 6.6 ± 0.2 ng/ml), but LH rhythmicity was decreased (P < 0.01). There was no significant difference in mean LH between normothermic ewes receiving bromocriptine and hyperthermic ewes receiving bromocriptine (6.5 ± 0.2 vs 6.6 ± 0.2 ng/ml). These results indicate that bromocriptine inhibits PRL and LH secretion in normothermic ewes. In hyperthermic ewes, the inhibitory effect of bromoriptine on PRL was even more pronounced, but the effect on LH release was minimal perhaps because LH was already inhibited by hyperthermia.  相似文献   

16.
Plasma concentrations of luteinizing hormone (LH) and testosterone were measured at 3, 8, and 11 months of age in 48 Africander cross (AX), 24 Brahman cross (BX), 21 Hereford-Shorthorn, selected (HSS) and 14 Hereford-Shorthorn, random-bred (HSR) bulls. In all breeds plasma LH was lower (P less than 0.01) at 8 months (1.7 ng/ml) than at 3 months (2.6 ng/ml) or at 11 months (2.6 ng/ml). Over all ages there were no differences among breeds in mean plasma LH (AX 2.4, BX 2.4, HSS 1.8, HSR 2.2 ng/ml) and no breed X age interactions. In contrast, plasma testosterone increased significantly (P less than 0.01) with age at a faster rate in the AX breed, resulting in a significant (P less than 0.05) breed X age interaction. Testosterone concentrations, though similar among breeds at 3 months of age (0.45 ng/ml), were much higher (P less than 0.01) by 11 months in AX (2.56 ng/ml) than in BX (1.30 ng/ml), HSS (0.78 ng/ml) or HSR (0.66 ng/ml) bulls. Although LH did not differ among the breeds studied, the more pronounced increase in testosterone with age in the Africander cross bulls is consistent with the higher level of fertility commonly observed in this breed when compared to Brahman cross and Hereford-Shorthorn breeds during natural mating in Queensland.  相似文献   

17.
Five Zebu x British crossbred bulls 17 months of age and of uniform liveweight (320+/-3 kg) were used to study testosterone responses to single intramuscular doses of exogenous gonadotropin-releasing hormone (GnRH). The eight dose levels used were 0, 31.25, 62.5, 125, 250, 500, 1000, and 2000 ng GnRH/kg live weight. Plasma samples for hormone responses were collected at 30-minute intervals from zero to three hours and at one-hour intervals from three to seven hours postinjection. Luteinizing hormone (LH) and testosterone responses were measured as peak heights or as areas under response curves. Increasing the dosage of GnRH increased the time to reach the peak LH response, the height and duration of the response, and the area under the response curve. The maximum LH peak height was reached by the 1 mug/kg dose. In contrast to LH, testosterone responses reached the same peak heights (two hours postinjection of GnRH) for all doses of GnRH. The only effect of increased dosage was to increase the duration of response. Testosterone responses showed repeatable differences (P<0.01) between animals, but LH responses did not. It was demonstrated that the testosterone status of bulls can be accurately assessed by simply measuring testosterone in a single plasma sample collected two to three hours after the intramuscular injection of 100 mug or more (dose unimportant) of GnRH per bull.  相似文献   

18.
We examined the effect of restraint stress (3 hr) on plasma LH and testosterone levels, on the Leydig cell LH/hCG receptor, and on the activity of enzymes in the testicular steroidogenic pathway of the adult rat. Restraint stress caused a 47% reduction in plasma testosterone concentrations, but had no effect on plasma LH levels. The binding capacity and affinity of Leydig cell LH/hCG receptors were not affected by restraint. Stress did not affect the testicular activity of 20,22 desmolase or 3 beta-hydroxysteroid dehydrogenase, but testicular interstitial cells of stressed rats incubated in vitro with progesterone as a substrate produced more 17 alpha-hydroxyprogesterone but less testosterone than control cells, and when incubated with 17 alpha-hydroxypregnenolone, produced 39% less androstenedione and 40% less testosterone than control cells. These results suggest that restraint stress inhibited 17,20 desmolase but not 17 alpha-hydroxylase activity. When the delta 4 pathway was blocked with cyanoketone (3 beta-HSD inhibitor), stress did not alter the production of pregnenolone or 17 alpha-hydroxypregnenolone, but the production of dehydroepiandrosterone by cells from stressed rats was subnormal, suggesting again a reduction of 17,20 desmolase activity. The data suggest that a major site of the inhibitory action of restraint stress on testicular steroidogenesis is the 17,20 desmolase step. The disruption of androgen production by restraint appears to be LH independent since stress did not affect plasma LH levels, the binding capacity or affinity of LH/hCG receptors, or the activity of 20,22 desmolase.  相似文献   

19.
The hormonal control of serving capacity in bulls was investigated in four sets of identical twin bulls averaging 9.9 ± 1.8 (SD) (H), 4.1 ± 1.0 (M1), 4.3 ± 1.0 (M2) and 1.9 ± 1.0 (L) services in four standardised tests. Within each pair, twin brothers had similar serving capacity. One bull from each twin set was castrated while its brother remained entire. When the castrates were maintaining their nadir in serving capacity (4, 0, 1 and 0) services for H, M1, M2 and L respectively) each was given testosterone propionate (TP) (1 mg/kg body weight) at 4 to 5 day intervals for 3 weeks, and along with its entire twin brother, tested for serving capacity 1 day after TP administration. Serving capacity of each castrate returned to its high, medium or low precastrational level and to the contemporary level of its entire twin brother. The plasma testosterone levels of the H, M1 + M2 and L entire bulls were similar (16.0 ± 3.0, 16.0 ± 3.0 and 22.4 ± 3.0 ng/ml respectively) despite large differences in serving capacity. It was concluded that (i) the presence of testosterone above a threshold level (<7 ng/ml in the assay used) is necessary for the maintenance of serving capacity and (ii) differences in serving capacity between bulls are not due to differences in plasma testosterone levels but to differences in their somatic responsiveness to threshold levels of testosterone.  相似文献   

20.
The temporal relationships between plasma concentrations of prolactin, thyroxine (T4) and triiodothyronine (T3) were determined in a group of six wild mallard drakes during the development and maintenance of long-day refractoriness after transfer from 6 h light: 18 h darkness (6L:18D) to 20L:4D for 24 weeks. As shown by changes in the plasma concentrations of luteinizing hormone (LH) and testosterone, the birds came into breeding condition and then became long-day refractory within 5 weeks of photostimulation. Long-day refractoriness was maintained for the remainder of the study. Plasma prolactin began to increase immediately after photostimulation, although not as fast as the increases in plasma LH and testosterone. The concentration of plasma T4 also increased after photostimulation but, as shown by decreased plasma LH and testosterone levels, only after the birds had become long-day refractory. The development of long-day refractoriness was thus directly correlated with an increased plasma prolactin and not with a change in plasma concentration of T4. Plasma T3 decreased after photostimulation but returned to prestimulation values as the birds became long-day refractory and remained stable for the remainder of the study. Concentrations of plasma T4 and prolactin returned to baseline values after about 15 weeks photostimulation showing that the long-term maintenance of long-day refractoriness is not directly related to continuously high plasma concentrations of either hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号