首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
The first step in the cryopreservation of cells or tissues is often the movement of a permeating cryoprotectant into the cells or tissues from the solution into which they have been placed. The cryoprotectant enters the cells or tissues by thermodynamic equilibration with the surroundings. In the reverse case, thermodynamic equilibration also drives the removal of permeating cryoprotectants by a dilution solution at the end of the preservation process when the cells or tissues are being readied for use. There have been reports of tissues having equilibrium cryoprotectant concentrations lower than that of the surrounding carrier solution. For various tissues, the equilibrium concentration of cryoprotectant inside the tissue is either equal to, or lower than the cryoprotectant concentration of the surrounding solution. A simple thermodynamic treatment of the solution-tissue equilibrium shows that an equilibrium concentration difference can exist between a tissue and the surrounding solution if a pressure difference can be maintained.  相似文献   

3.
Progress in tissue engineering is now impacting beyond the field of regenerative medicine. Engineered tissues are now used as tools to evaluate the toxicity of compounds or even to enable the modelling of disease. While many of the materials that are used to facilitate tissue growth are designed to enable cell attachment, many researchers consider that the contraction and modification of these matrices by attached cells is not desirable and take measures to prevent this from occurring. Where substantial alignment of the molecules within tissues, however, is a feature of structure the process of contraction can be exploited to guide new matrix deposition. In this paper, we will demonstrate how we have used the cell contraction process to generate tissues with high levels of organization. The tissues that have been grown in the laboratory have been characterized using a suite of analytical techniques to demonstrate significant levels of matrix organization and mechanical behaviour analogous to natural tissues. This paper provides an overview of research that has been undertaken to determine how tissues have been grown in vitro with structuring from the molecular, right through to the macroscopic level.  相似文献   

4.
《Epigenetics》2013,8(6):527-538
Although most CpG islands are generally thought to remain unmethylated in all adult somatic tissues, recent genome-wide approaches have found that some CpG islands have distinct methylation patterns in various tissues, with most differences being seen between germ cells and somatic tissues. Few studies have addressed this among human somatic tissues and fewer still have studied the same sets of tissues from multiple individuals. In the current study, we used Restriction Landmark Genomic Scanning to study tissue specific methylation patterns in a set of twelve human tissues collected from multiple individuals. We identified 34 differentially methylated CpG islands among these tissues, many of which showed consistent patterns in multiple individuals. Of particular interest were striking differences in CpG island methylation, not only among brain regions, but also between white and grey matter of the same region. These findings were confirmed for selected loci by quantitative bisulfite sequencing. Cluster analysis of the RLGS data indicated that several tissues clustered together, but the strongest clustering was in brain. Tissues from different brain regions clustered together, and, as a group, brain tissues were distinct from either mesoderm or endoderm derived tissues which demonstrated limited clustering. These data demonstrate consistent tissue specific methylation for certain CpG islands, with clear differences between white and grey matter of the brain. Furthermore, there was an overall pattern of tissue specifically methylated CpG islands that distinguished neural tissues from non-neural.  相似文献   

5.
There has been no report on the determination of uric acid (UA) in human brain and heart tissues. UA and ascorbic acid (AA) in human cerebral cortex and heart tissues excised after cardiac death have been studied by reversed-phase high-performance liquid chromatography (HPLC) with electrochemical detection (ECD). It has been found that the levels of AA and UA in the human cerebral cortex tissues tend to decrease and increase, respectively, after cardiac death as a function of time between death and forensic operation. In addition, it has been found that there is no special relationship between UA levels in human heart tissues and time after cardiac death, also that the UA levels in the heart are high as compared with those in human cerebral cortex tissues. We have emphasized that the HPLC-ECD method is useful in determining UA and AA in mammalian tissues by one-time chromatography to gain a better understanding of the relationship between disease and serum urate level.  相似文献   

6.
7.
Although most CpG islands are generally thought to remain unmethylated in all adult somatic tissues, recent genome-wide approaches have found that some CpG islands have distinct methylation patterns in various tissues, with most differences being seen between germ cells and somatic tissues. Few studies have addressed this among human somatic tissues and fewer still have studied the same sets of tissues from multiple individuals. In the current study, we used Restriction Landmark Genomic Scanning to study tissue specific methylation patterns in a set of 12 human tissues collected from multiple individuals. We identified 34 differentially methylated CpG islands among these tissues, many of which showed consistent patterns in multiple individuals. Of particular interest were striking differences in CpG island methylation, not only among brain regions, but also between white and grey matter of the same region. These findings were confirmed for selected loci by quantitative bisulfite sequencing. Cluster analysis of the RLGS data indicated that several tissues clustered together, but the strongest clustering was in brain. Tissues from different brain regions clustered together, and, as a group, brain tissues were distinct from either mesoderm or endoderm derived tissues which demonstrated limited clustering. These data demonstrate consistent tissue specific methylation for certain CpG islands, with clear differences between white and grey matter of the brain. Furthermore, there was an overall pattern of tissue specifically methylated CpG islands that distinguished neural tissues from non-neural.Key words: Tissue specific methylation, CpG island methylation, neural, brain tissue, grey matter, white matter  相似文献   

8.
Histopathological diagnosis using Formalin-Fixed Paraffin Embedded (FFPE) tissues is essential for the prognostic and therapeutic management of cancer patients. Pathologists are being confronted with increasing demands, from both clinicians and patients, to provide immunophenotypic and gene expression data from FFPE tissues to allow the planning of personalized therapeutic regimens. Recent improvements in the protocols for pre-analysis processing of pathological tissues aim to better preserve cellular details and to conserve antigens and nucleic acid sequences. These developments have been recently patented. The international protocol for the transporting of surgical specimens from the surgical theatre to the pathology department is to immerse the specimen in formalin. The alternative method of sealing the specimens into bags under a vacuum and then cooling is a well-accepted and environmentally safe procedure that overcomes the many drawbacks linked to transfer in formalin. Importantly, RNA is notoriously poorly preserved in FFPE tissue. Due to this, successful procedures for the extraction of genetic information from archival tissues have been the object of several studies and patents. Novel molecular approaches for RT-qPCR and gene array analysis on FFPE tissues are presented here. Moreover, a major advance is reported in this study, the observation that tissue fixation in cold conditions allows a much better preservation of nucleic acid sequences.  相似文献   

9.
We have used alkaline elution to study the repair of X-ray-induced DNA strand breaks in vivo in two fibrosarcoma tumors and in several normal mouse tissues after whole-body irradiation of mice with 10-12.5 Gy of X rays. Both tumors were found to repair damage significantly faster and to a greater extent than any of the normal tissues, so that by 2 hr after irradiation the level of damage in both tumors was indistinguishable from unirradiated control values. Of the normal tissues studied, liver repaired the fastest. The kinetics for the other normal tissues were essentially the same, showing an appreciable level (7-16%) of unrepaired lesions still evident after 2 hr. Even as late as 12 hr there was a significant amount of residual damage in some tissues, with testes and spleen showing the greatest level (ca. 15%). The repair kinetics for each tissue were not appropriately described by a sum of two exponentials. In contrast, previously reported data for many homogeneous mammalian cell systems in vitro and for some tissues in vivo have shown biphasic repair kinetics. This difference may be related to heterogeneity of both cell type and environment within the tissue populations used in the investigation. The faster repair of DNA strand breaks by tumor cells relative to cells from normal tissues was not readily explainable in terms of such radiobiological parameters as overall tissue oxygenation or sulfhydryl content. Rather, it appears that the degree of differentiation of the cells within the tissue population may be a major determinant of repair proficiency. Based on a model incorporating a competition between repair and fixation of sublethal lesions, these data are consistent with the idea that tumor cells may have a repair, and hence survival, advantage over normal cells in response to ionizing radiation.  相似文献   

10.
Xu K  Zheng X  Sehgal A 《Cell metabolism》2008,8(4):289-300
Studies in mammals have indicated a connection between circadian clocks and feeding behavior, but the nature of the interaction and its relationship to nutrient metabolism are not understood. In Drosophila, clock proteins are expressed in many metabolically important tissues but have not been linked to metabolic processes. Here we demonstrate that Drosophila feeding behavior displays a 24 hr circadian rhythm that is regulated by clocks in digestive/metabolic tissues. Flies lacking clocks in these tissues, in particular in the fat body, also display increased food consumption but have decreased levels of glycogen and a higher sensitivity to starvation. Interestingly, glycogen levels and starvation sensitivity are also affected by clocks in neuronal cells, but the effects of neuronal clocks generally oppose those of the fat body. We propose that the input of neuronal clocks and clocks in metabolic tissues is coordinated to provide effective energy homeostasis.  相似文献   

11.
Recent advances in our understanding of conodont palaeobiology and functional morphology have rendered established hypotheses of element growth untenable. In order to address this problem, hard tissue histology is reviewed paying particular attention to the relationships during growth of the component hard tissues comprising conodont elements, and ignoring a priori assumptions of the homologies of these tissues. Conodont element growth is considered further in terms of the pattern of formation, of which four distinct types are described, all possibly derived from a primitive condition after heterochronic changes in the timing of various developmental stages. It is hoped that this may provide further means of unravelling conodont phylogeny. The manner in which the tissues grew is considered homologous with other vertebrate hard tissues, and the elements appear to have grown in a way similar to the growing scales and growing dentition of other vertebrates.  相似文献   

12.
Several investigations have been made for the heat flow problems in skin and subdermal tissues under normal physiological and atmospheric conditions. This paper considers the existence of a malignant tumour in the underlying tissues of epidermis of a human body. The surrounding tissues are assumed to have normal physiological functions, namely self-controlled metabolic activity, variable blood flow and perspiration. For the malignant portion the metabolic activity is taken to be continuous and uncontrolled. The effect of this factor is studied on the temperature profiles of the skin.  相似文献   

13.
14.
Genes involved in differentiation of notochord or muscle are expressed in specific regions of the involuted dorsal mesoderm in mid-gastrula Xenopus embryo. The presumptive notochord or the presomitic mesoderm have been cultured either in isolation or recombination to investigate whether these tissues have been determined. Cell differentiation was checked by specific markers of notochord (Shh) or muscle cell (desmin, myosin). The results show that the presumptive notochord can differentiate into vacuolated notochord with a weak expression of Shh, while the presomitic mesoderm differentiate into muscle cells with a normal expression of desmin and myosin in vitro. The same result was obtained when the two tissues have been cocultured. These data suggest that the cell fate of the involuted dorsal mesoderm in mid-gastrula has been determined, cells can differentiate according to their fates without further signals from the adjacent tissues, but no functional structures can be formed by these tissues in vitro.  相似文献   

15.
The synthesis of sulfated glycosaminoglycans has been studied in a wide variety of embryonic chick tissues. All tissues studied have the capability to manufacture, but not necessarily accumulate, the chondroitin sulfates as well as other glycosaminoglycans. The relative distribution of glycosaminoglycans differs between tissues and changes with age.  相似文献   

16.
17.
胶原蛋白研发的最新进展   总被引:21,自引:0,他引:21  
胶原蛋白是一组由多糖蛋白分子组成的大家族,是结缔组织的主要蛋白成份。胶原蛋白富含多样性及组织分布的特异性,是与各种组织和器官功能相关的功能性蛋白。胶原蛋白不但在个体的发生、分化以及形成过程中与其它结缔组织一样起着重要的作用,而且与机体的衰老和疾病有极其密切的关系。与此同时,胶原蛋白由于其独特的理化性质、优良的生物相容性以及材料间的兼容性,在许多领域得到了广泛应用。本文对胶原蛋白的种类、性质、产品标准及其应用市场进行了综述。  相似文献   

18.
Salt-stress-induced ABA accumulation in maize root tissues was compared with that in leaf tissues. While salt stress with NaCl resulted in a significant ABA accumulation in root tissues (up to 10-fold), the same stress only led to a small ABA accumulation in leaf tissues (about 1-fold). Pretreatment with ethylene glycol (EG), a permeable and inert monomer of PEG, could prevent the shrinkage of cell volume and completely block the ABA accumulation in leaf tissues under salt stress, but substantial salt-induced ABA accumulation was still observed in root tissues following such pretreatment. Hypotonic salt solutions, i.e. below 100 mM NaCl, still induced a significant ABA accumulation (more than 3-fold) in roots, but showed no effect on that in leaf tissues. Results suggest that the salt-stress-induced ABA accumulation in roots may also be triggered by an osmosensing mechanism, which is in addition to the perception of the changes in reduced cellular volume or plasmalemma tension that leads to ABA accumulation in leaves. When leaf and root tissues were immersed into salt solutions, salt entered into the cells as a function of time and salt concentrations. Such entrance apparently led to a loss of sensitivity of leaf tissues to accumulate ABA under the salt stress, and also prevented the leaf tissues from responding to further air-drying in terms of ABA accumulation. Roots showed no such responses. Results suggest that the entrance of salt into leaf cells brought about some toxic effect that might have reduced the capability of leaf cells to produce ABA under dehydration.  相似文献   

19.
Despite the immense importance of the wing in the evolution and successful radiation of the insect lineages, the origin of this critical structure remains a hotly-debated mystery. Two possible tissues have been identified as an evolutionary origin of wings; the lateral expansion of the dorsal body wall (tergal edge) and structures related to an ancestral proximal leg segment (pleural tissues). Through studying wing-related tissues in the red flour beetle, Tribolium castaneum, we have previously presented evidence in support of a dual origin of insect wings, a third hypothesis proposing that wings evolved from a combination of both tergal and pleural tissues. One key finding came from the investigation of a Cephalothorax (Cx) mutant, in which the ectopic wing characteristic to this mutant was found to be formed from both tergal and pleural contributions. However, the degree of contribution of the two tissues to the wing remains elusive. Here, we took advantage of multiple Cx alleles available in Tribolium, and produced a variety of degrees and types of ectopic wing tissues in their prothoracic segments. Through detailed phenotypic scoring of the Cx phenotypes based on nine categories of mutant traits, along with comprehensive morphological analysis of the ectopic wing tissues, we found that (i) ectopic wing tissues can be formed at various locations in the prothorax, even internally, (ii) the lateral external ectopic wing tissues have tergal origin, while the internal and posterior external ectopic wing tissues appear to be of pleural origin, and (iii) the ectopic wing tissues of both tergal and pleural origin are capable of transforming into wing surface tissues. Collectively, these outcomes suggest that the evolutionary contribution of each tissue to a complete wing may be more complex than the simple binary view that is typically invoked by a dual origin model (i.e. the wing blade from the tergal contribution + musculature and articulation from the pleural contribution).  相似文献   

20.
DNA base modifications in chromatin of human cancerous tissues.   总被引:14,自引:0,他引:14  
Free radical-induced damage to DNA in vivo is implicated to play a role in carcinogenesis. Evidence exists that DNA damage by endogenous free radicals occurs in vivo, and there is a steady-state level of free radical-modified bases in cellular DNA. We have investigated endogenous levels of typical free radical-induced DNA base modifications in chromatin of various human cancerous tissues and their cancer-free surrounding tissues. Five different types of surgically removed tissues were used, namely colon, stomach, ovary, brain and lung tissues. In chromatin samples isolated from these tissues, five pyrimidine-derived and six purine-derived modified DNA bases were identified and quantitated by gas chromatography/mass spectrometry with selected-ion monitoring. These were 5-hydroxy-5-methylhydantoin, 5-hydroxyhydantoin, 5-(hydroxymethyl)uracil, 5-hydroxycytosine, 5,6-dihydroxycytosine, 4,6-diamino-5-formamidopyrimidine, 8-hydroxyadenine, xanthine, 2-hydroxyadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 8-hydroxyguanine. These compounds are known to be formed typically by hydroxyl radical attack on DNA bases. In all cases, elevated amounts over control levels of modified DNA bases were found in cancerous tissues. The amounts of modified bases depended on the tissue type. Lung tissues removed from smokers had the highest increases of modified bases above the control levels, and the highest overall amounts. Colon cancer tissue samples had the lowest increases of modified bases over the control levels. The results clearly indicate higher steady-state levels of modified DNA bases in cancerous tissues than in their cancer-free surrounding tissues. Some of these lesions are known to be promutagenic, although others have not been investigated for their mutagenicity. Identified DNA lesions may play a causative role in carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号