首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The existence of monoecious and dioecious populations within plant species is rare. This limits opportunities to investigate the ecological mechanisms responsible for the evolution and maintenance of these contrasting sexual systems. In Sagittaria latifolia, an aquatic flowering plant, monoecious and dioecious populations exist in close geographic proximity but occupy distinct wetland habitats differing in the relative importance of disturbance and competition, respectively. Life-history theory predicts contrasting evolutionary responses to these environmental conditions. We propose that the maintenance of monoecy and dioecy in S. latifolia is governed by ecological selection of divergent life-history strategies in contrasting habitats. Here we evaluate this hypothesis by comparing components of growth and reproduction between monoecious and dioecious populations under four conditions: natural populations, a uniform glasshouse environment, a common garden in which monoecious and dioecious populations and their F1 progeny were compared, and a transplant experiment using shaded and unshaded plots in a freshwater marsh. Plants from dioecious populations were larger in size and produced heavier corms in comparison with monoecious populations. Monoecious populations flowered earlier and produced more flowers, clonal ramets, and corms than dioecious populations. The life-history differences between the sexual systems were shown to have a quantitative genetic basis, with F1 progeny generally exhibiting intermediate trait values. Survival was highest for each sexual system in field plots that most closely resembled the habitats in which monoecious (unshaded) and dioecious (shaded) populations grow. These results demonstrate that monoecious and dioecious populations exhibit contrasting patterns of investment in traits involved with growth and reproduction. Selection for divergent life histories between monoecious and dioecious populations of S. latifolia appears to be the principal mechanism maintaining the integrity of the two sexual systems in areas of geographic overlap.  相似文献   

2.
Investigation of gender specialization in plants has led to several theories on the evolution of sexual dimorphism: reproductive compensation, based on enhanced reproductive efficiency with gender specialization (flowers should be larger on dioecious plants); Bateman's Principle, based on sex-specific selection (display for pollinator attraction in males and seed set in females); and intersexual floral mimicry, based on mimicry of a reward-providing gender by a non-reward providing gender (reduced dimorphism in dioecious plants due to increased spatial separation of male and female flowers). These theories were evaluated in Ecballium elaterium, which contains two subspecies, elaterium (monoecious) and dioicum (dioecious). Our results show that flowers of the dioecious subspecies are larger and allocate more to reproductive organs than do flowers of the monoecious subspecies. Both subspecies are sexually dimorphic (male flowers larger than female flowers). Variance in flower size among populations is greater in the dioecious subspecies. Finally, there is sufficient genetic variation to enable ongoing response to selection; genetic correlation constraints on independent response of female and male flowers may be stronger in the monoecious subspecies. Our findings provide support for aspects of all three theories, suggesting that the evolution of floral dimorphism is based on a complex interplay of factors.  相似文献   

3.
Plant species rarely exhibit both monoecious and dioecious sexual systems. This limits opportunities to investigate the consequences of combined versus separate sex function on mating patterns and genetic variation and the analysis of factors responsible for the evolution and maintenance of the two sexual systems. Populations of the North American clonal aquatic Sagittaria latifolia are usually either monoecious or dioecious and often grow in close geographic proximity. We investigated mating patterns, genetic structure, and relationships between the two sexual systems using allozyme variation in populations from southern Ontario, Canada. As predicted, selfing rates in monoecious populations (n = 6, mean = 0.41) were significantly higher than in dioecious populations (n = 6, mean = 0.11). Moreover, marker-based estimates of inbreeding depression (delta) indicated strong selection against inbred offspring in both monoecious (mean delta = 0.83) and dioecious (mean delta = 0.84) populations. However, the difference in selfing rate between the sexual systems was not reflected in contrasting levels of genetic variation. Our surveys of 12 loci in 15 monoecious and 11 dioecious populations revealed no significant differences in the proportion of polymorphic loci (P), number of alleles per locus (A), or observed and expected heterozygosity (H(o) and H(e), respectively). Strong inbreeding depression favoring survival of outcrossed offspring may act to maintain similar levels of diversity between monoecious and dioecious populations. Despite geographical overlap between the two sexual systems in southern Ontario, a dendrogram of genetic relationships indicated two distinct clusters of populations largely corresponding to monoecious and dioecious populations. Reproductive isolation between monoecious and dioecious populations appears to be governed, in part, by observed differences in habitat and life history. We suggest that selfing and inbreeding depression in monoecious populations are important in the transition from monoecy to dioecy and that the maintenance of distinct sexual systems in S. latifolia is governed by interactions between ecology, life history, and mating.  相似文献   

4.
In this analysis, we attempt to understand how monoecy and dioecy drive spatial genetic structure (SGS) in plant populations. For this purpose, plants of the genus Ficus were used as a comparative model due to their particular characteristics, including high species diversity, variation in life histories, and sexual systems. One of the main issues we assessed is whether dioecious fig tree populations are more spatially genetically structured than monoecious populations. Using the Sp statistic, which allows for quantitative comparisons among different studies, we compared the extent of SGS between monoecious and dioecious Ficus species. To broaden our conclusions we used published data on an additional 27 monoecious and dioecious plant species. Furthermore, genetic diversity analyses were performed for two monoecious Ficus species using 12 microsatellite markers in order to strengthen our conclusions about SGS. Our results show that dioecy, more than monoecy, significantly contributes to SGS in plant populations. On average, the estimate of Sp was six times higher for dioecious Ficus species than monoecious Ficus species and it was two times higher in dioecious than monoecious plant species. Considering these results, we emphasize that the long‐distance pollen dispersal mechanism in monoecious Ficus species seems to be the dominant factor in determining weak spatial genetic structure, high levels of genetic diversity, and lack of inbreeding. Although Ficus constitute a model species to study SGS, a more general comparison encompassing a wider range of plants is required in order to better understand how sexual systems affect genetic structure.  相似文献   

5.
Urtica dioica (“stinging nettle”) includes both dioecious and monoecious forms. In most sexually dimorphic angiosperm species, the genetic mechanisms of sex determination are completely unknown. The few species that include both monoecious and dioecious forms provide an unusual opportunity to examine the genetic mechanisms that underlie the separation of sexual functions, through crossing experiments and analysis of progeny segregation. Our focus is on the genetic mechanisms distinguishing monoecious and dioecious forms of U. dioica. A complicated picture of sex determination in this species has resulted from crosses between dioecious and monoecious subspecies, as well as between dioecious and monoecious forms of the same subspecies. Most significant is evidence for a maternal influence on sex determination and for the possibility of gynodioecy as an intermediate stage in the evolutionary pathway to dioecy. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

6.
The stable coexistence within populations of females, males, and hermaphrodites (subdioecy) is enigmatic because theoretical models indicate that maintenance of this sexual system involves highly restricted conditions. Subdioecy is more commonly interpreted as a transitory stage along the gynodioecious pathway from hermaphroditism to dioecy. The widespread, North American, aquatic plant Sagittaria latifolia is largely composed of monoecious or dioecious populations; however, subdioecious populations with high frequencies of hermaphrodites (mean frequency = 0.50) characterize the northern range boundary of dioecy in eastern North America. We investigated two hypotheses for the origin of subdioecy in this region. Using polymorphic microsatellite loci, we evaluated whether subdioecy arises through selection on standing genetic variation for male sex inconstancy in dioecious populations, or results from hybridization between monoecious and dioecious populations. We found evidence for both pathways to subdioecy, although hybridization was the more common mechanism, with genetic evidence of admixture in nine of 14 subdioecious populations examined. Hybridization has also played a role in the origin of androdioecious populations in S. latifolia, a mechanism not often considered in the evolution of this rare sexual system. Our study demonstrates how hybridization has the potential to play a role in the diversification of plant sexual systems.  相似文献   

7.
We sequenced the chloroplast rubisco large subunit (rbcL) gene in 236 samples of Porphyra sensu lato from the northeast Pacific. Comparisons of sequences within the study area as well as comparisons with published sequences revealed up to five cryptic species among the 22 named species: a species closely related to Porphyra abbottiae, a species previously identified as P. pseudolinearis, a species closely related to P. pseudolanceolata and previously identified as that species, a previously unknown species from the eastern Aleutian Islands, and a species closely related to P. schizophylla and previously identified as that species. All of these previously unrecognized species had high bootstrap values separating them from the other species. In addition, our wide geographic sampling allowed us to extend, curtail or clarify the geographic ranges of a number of the species. We also provide published sequences for P. gardneri and P. smithii for the first time. We compared amount of sequence divergence within species grouped on the basis of sexuality (monoecious, sectored into separate male and female “halves”, or dioecious), habitat (high, mid, or low intertidal/subtidal), and seasonality (winter, spring, or summer) using Tukey’s HSD t test, but we observed no significant differences between species grouped in this manner. Different species showed different levels of genetic variation in the rbcL gene apparently unrelated to these traits. Also, we observed no differences in the patterns of genetic variation in a species based on whether the specimens were collected from outside or from within the region covered by ice during Pleistocene glaciations.  相似文献   

8.
The dioecious species Urtica dioica harbours wide variation in sex ratio of seeds. We conducted a series of crosses to analyse the genetic basis of sex determination in this species. Dutch populations of U. dioica contain low proportions of monoecious individuals beside male and female plants. Self-pollination of monoecious plants always yielded female, male and monoecious plants, generally in a ratio of one female to three male/monoecious individuals. This motivated us to write down a simple model in which gender is determined by one major sex-determination locus with four alleles. In the model males and monoecious plants have distinct genotypes but are both heterozygous at the sex-determination locus. We first made crosses among progeny obtained after self-pollination of monoecious plants. These crosses showed that the monoecious trait generally showed Mendelian inheritance and was passed on to the next generation via both pollen and seeds. Further crosses between monoecious plants and plants from dioecious system indicated that alleles from the dioecious system are often dominant. However, many exceptions to our genetic model are observed which suggest that dominance is incomplete and/or that more genes are involved in sex determination. We discuss to what extent sex determination genes explain the strongly biased seed sex ratios and argue that additional genes, for instance genes for female choice, must also be involved.  相似文献   

9.
In dispersive species with continuous distributions, genetic differentiation between local populations is often absent or subtle and thus difficult to detect. To incorporate such subtle differentiation into management plans, it may be essential to analyse many samples from many localities using adequate numbers of high‐resolution genetic markers. Here, we evaluated the usefulness of dense locality sampling in resolving genetic population structure in the ayu (Plecoglossus altivelis), a dispersive fish important in Japanese inland fisheries. Genetic variability in, and differentiation between, ayu populations around the Japan–Ryukyu Archipelago were investigated in 4746 individuals collected from 120 localities by genotyping 12 microsatellite markers. These individuals represented the two subspecies of ayu, namely the Ryukyuan subspecies (Plecoglossus altivelis ryukyuensis) and both amphidromous and landlocked forms of the nominotypical subspecies (P. a. altivelis) along the archipelago. We successfully detected an absence of genetic differentiation within the landlocked form and subtle but significant differentiation and clear geographic patterns of genetic variation among populations of the amphidromous form, which had been considered genetically homogeneous. This suggests that dense locality sampling effectively resolves subtle differences in genetic population structure, reducing stochastic deviation in the detection of genetic differentiation and geographic patterns in local populations of this dispersive species. Resampling analyses based on empirical data sets clearly demonstrate the effectiveness of increasing the number of locality samples for stable and reliable estimations of genetic fixation indices. The genetic population structure observed within the amphidromous form provides useful information for identifying management or conservation units in ayu.  相似文献   

10.
It is becoming increasingly easy to generate genotypic data but much harder to gather an equivalent amount of phenotypic information, particularly for chemical traits. In this study of Eucalyptus globulus ssp. globulus, we measured about 60 chemical leaf traits of trees growing in a common garden to address the following questions: (1) how much variation is there between geographic regions, populations within regions and within populations? (2) How do chemical traits vary over the species’ geographic range? (3) If so, does E. globulus ssp. globulus exhibit distinct chemotypes – plants that are morphologically similar but which differ chemically? (4) Are the affinities between E. globulus ssp. globulus and closely related subspecies apparent in the chemical variation? Variation among trees within populations contributed most variation in leaf chemistry followed by variation between geographic regions. For many traits, variation among populations within proposed races and variation among proposed races within geographic regions explained little of the total variation. There was a cline in the concentration of secondary chemicals with the lowest concentrations in Tasmanian populations and the highest in those from eastern Victoria, with intermediate concentrations in populations from Bass Strait Islands. We identified three chemotypes, characterised by specific terpenes and formylated phloroglucinol compounds. The frequency of occurrence of these chemotypes showed a geographic pattern also, with “chemotype 1” predominating in Tasmania, while “chemotypes 2 and 3” occurred at highest frequency in eastern Victoria. We suggest that the chemotypes reflect introgression between E. globulus ssp. globulus and the three closely related subspecies – E. globulus ssp. bicostata, E. globulus ssp. maidenii and E. globulus ssp. pseudoglobulus. Although the formation of land-bridges with fluctuating sea levels has no doubt shaped the evolutionary history of all four subspecies, we propose that the migratory swift parrot (Lathamus discolor), an important pollinator and a species closely associated with E. globulus, has helped shape the evolution of the four tree subspecies.  相似文献   

11.
Clonality is often implicated in models of the evolution of dioecy, but few studies have explicitly compared clonal structure between plant sexual systems, or between the sexes in dioecious populations. Here, we exploit the occurrence of monoecy and dioecy in clonal Sagittaria latifola (Alismataceae) to evaluate two main hypotheses: (i) clone sizes are smaller in monoecious than dioecious populations, because of constraints imposed on clone size by costs associated with geitonogamy; (ii) in dioecious populations, male clones are larger and flower more often than female clones because of sex‐differential reproductive costs. Differences in clone size and flowering could result in discordance between ramet‐ and genet‐based sex ratios. We used spatially explicit sampling to address these hypotheses in 10 monoecious and 11 dioecious populations of S. latifolia at the northern range limit in Eastern North America. In contrast to our predictions, monoecious clones were significantly larger than dioecious clones, probably due to their higher rates of vegetative growth and corm production, and in dioecious populations, there was no difference in clone size between females and males; ramet‐ and genet‐based sex ratios were therefore highly correlated. Genotypic diversity declined with latitude for both sexual systems, but monoecious populations exhibited lower genotypic richness. Differences in life history between the sexual systems of S. latifolia appear to be the most important determinants of clonal structure and diversity.  相似文献   

12.
The nectar-sugar compositions of 338 individuals from 27 populations in two subspecies of Ipomopsis longiflora from Arizona, New Mexico, Texas, and Chihuahua were determined by high-performance liquid chromatography. Mean sucrose compositions of populations ranged from 73.2% to 91.9%, and the standard deviations ranged from 1.9% to 9.1%. Pairs and aggregates of populations were statistically compared. The nectar-sugar compositions of the two subspecies were significantly different as aggregates. Subspecies australis averaged 9.5% fructose, 7.9% glucose, and 82.6% sucrose while subspecies longiflora averaged 7.8% fructose, 5.7% glucose, and 86.5% sucrose. Each subspecies was found to have two groups of populations. Groups of higher sucrose populations were found along the contact zone of the subspecies; away from the contact zone both subspecies had groups of lower sucrose populations. The data show that significant variability exists in this biochemical character, and the pattern of variation is clearly related to the geographic distribution of the populations. The genetic and selective mechanisms involved are unknown.  相似文献   

13.
Eucalyptus camaldulensis is one of the most widely utilised eucalypts. It is also the only eucalypt that occurs across the Australian continent, playing a key ecological role as fauna habitat and in riverbank stabilisation. Despite its ecological and economic importance, uncertainty remains regarding the delineation of genetic and morphological variants. Nine hundred and ninety trees from 97 populations, representing the species’ geographic range were genotyped using 15 microsatellite loci and patterns of diversity compared with restriction fragment length polymorphisms in 29 of these populations. Both markers showed that despite having a riverine distribution, downstream seed dispersal has had less influence than geographic distance on dispersal patterns. Spatial patterns in the distribution of microsatellite genotypes were compared with environmental parameters and boundaries defined by river systems, drainage basins and proposed subspecies. Significant genetic differences among populations within river systems indicated that rivers should not be treated as a single genetic entity in conservation or breeding programmes. Strong geographic trends were evident with 40% of variation in genetic diversity explained by latitude and moisture index. Isolation by distance and significant correlations between genetic distance and environmental parameters for most loci suggest historical factors have had more influence than selection on current patterns of distribution of genetic diversity. Geographic structuring of molecular variation, together with congruence between genetic and morphological variation indicate that E. camaldulensis should be treated as a number of subspecies rather than a single variable taxon. High levels of genetic diversity and geographic trends in the distribution of variation provide a firm basis for further exploration of the species’ genetic resources.  相似文献   

14.
Black-tailed (Limosa limosa) and Hudsonian Godwits (L. haemastica) are sometimes described as a superspecies. The Black-tailed Godwit is further split into three subspecies on the basis of morphological differences (L. l. limosa, L. l. islandica and L. l. melanuroides). We studied variation in partial mtDNA control region sequences among Black-tailed and Hudsonian Godwits which showed 5% divergence. Black-tailed and Hudsonian Godwits were thus clearly differentiated and the separate species status for the two taxa is validated. All three subspecies described for the Black-tailed Godwit had unique haplotypes but the genetic distances were small (0.3–0.6%). Despite small genetic differences we could not detect any substantial gene flow between any of the subspecies as haplotypes were private to each subspecies. Thus, genetic variation within Black-tailed Godwits showed a clear geographic structure. We found a high proportion of rare private haplotypes in three fringe populations of the nominate subspecies of the Black-tailed Godwit (L. l. limosa) where godwits breed in low numbers, but no genetic variation at all in a sample from the Netherlands where godwits are abundant. This suggests that Dutch Godwits may have been affected by a founder effect.  相似文献   

15.
Bighorn sheep populations experienced a drastic reduction in both distribution and abundance until the advent of modern wildlife management, where improving viability of extant populations and translocating animals into historical habitat range have been the most important management policies. The fact that subspecies relationships among bighorn are ambiguous,together with the importance of selecting appropriate source stock and the expense of translocation projects, makes an understanding of subspecies relationships and genetic variation, within and between populations, important for the management and conservation of this species. In this study, genetic variation in 279 bighorn sheep from 13 study sites in Arizona, California, New Mexico and Alberta, Canada were examined by analyzing ten microsatellite loci to determine interpopulation differentiation and relationships between closely related taxa. All populations contained a substantial amount of genetic variation. Genetic differences between populations were large and roughly proportional to geographic distance. The significance of this to desert subspecies relationships and management is discussed.  相似文献   

16.
The role of mutations of small versus large effect in adaptive evolution is of considerable interest to evolutionary biologists. The major evolutionary pathways for the origin of dioecy in plants (the gynodioecy and monoecy-paradioecy pathways) are often distinguished by the number of mutations involved and the magnitude of their effects. Here, we investigate the genetic and environmental determinants of sex in Sagittaria latifolia, a species with both monoecious and dioecious populations, and evaluate evidence for the evolution of dioecy via gynodioecy or monoecy-paradioecy. We crossed plants of the two sexual systems to generate F1, F2 and backcross progeny, and grew clones from dioecious populations in low-and high-fertilizer conditions to examine sex inconstancy in females and males. Several lines of evidence implicate two-locus control of the sex phenotypes. In dioecious populations sex is determined by Mendelian segregation of alleles, with males heterozygous at both the male- and female-sterility loci. In monoecious populations, plants are homozygous for alleles dominant to male sterility in females and recessive to female sterility in males. Experimental manipulation of resources revealed sex inconstancy in males but not females. These results are consistent with predictions for the evolution of dioecy via gynodioecy, rather than the expected monoecy-paradioecy pathway, given the ancestral monoecious condition.  相似文献   

17.
Genetic crosses between the dioecious Bryonia dioica (Cucurbitaceae) and the monoecious B. alba in 1903 provided the first clear evidence for Mendelian inheritance of dioecy and made B. dioica the first organism for which XY sex‐determination was experimentally proven. Applying molecular tools to this system, we developed a sex‐linked sequence‐characterized amplified region (SCAR) marker for B. dioica and sequenced it for individuals representing the full geographic range of the species from Scotland to North Africa. For comparison, we also sequenced this marker for representatives of the dioecious B. cretica, B. multiflora and B. syriaca, and monoecious B. alba. In no case did any individual, male or female, yield more than two haplotypes. In northern Europe, we found strong linkage between our marker and sex, with all Y‐sequences being identical to each other. In southern Europe, however, the linkage between our marker and sex was weak, with recombination detected within both the X‐ and the Y‐homologues. Population genetic analyses suggest that the SCAR marker experienced different evolutionary pressures in northern and southern Europe. These findings fit with phylogenetic evidence that the XY system in Bryonia is labile and suggest that the genus may be a good system in which to study the early steps of sex chromosome evolution.  相似文献   

18.
We investigated the influence of differing life history traits on the genetic structure of the related species Mimetes fimbriifolius and Mimetes hirtus (Proteaceae), which occur in the South African fynbos. Both species are bird‐pollinated and ant‐dispersed, but differ in rarity, longevity, ecological strategy and the fragmentation of their distribution area. We used AFLPs to study genetic variation within and between 21 populations of these two species across their distribution range. AFLP analysis revealed significantly higher genetic variation within populations of M. fimbriifolius than within M. hirtus. While M. fimbriifolius clearly lacked any significant genetic differentiation between populations, a distinct geographic pattern was observed for M. hirtus. Differentiation was, however, stronger at the regional (ΦPT = 0.57) than at the local scale (ΦPT = 0.08). Our results clearly indicate that even closely related species that share the same mode of pollination and seed dispersal can differ in their genetic structure, depending on the magnitude of fragmentation, longevity of individuals and ecological strategy.  相似文献   

19.
Population divergence in geographic isolation is due to a combination of factors. Natural and sexual selection may be important in shaping patterns of population differentiation, a pattern referred to as ‘isolation by adaptation’ (IBA). IBA can be complementary to the well‐known pattern of ‘isolation by distance’ (IBD), in which the divergence of closely related populations (via any evolutionary process) is associated with geographic isolation. The barn swallow Hirundo rustica complex comprises six closely related subspecies, where divergent sexual selection is associated with phenotypic differentiation among allopatric populations. To investigate the relative contributions of selection and geographic distance to genome‐wide differentiation, we compared genotypic and phenotypic variation from 350 barn swallows sampled across eight populations (28 pairwise comparisons) from four different subspecies. We report a draft whole‐genome sequence for H. rustica, to which we aligned a set of 9493 single nucleotide polymorphisms (SNPs). Using statistical approaches to control for spatial autocorrelation of phenotypic variables and geographic distance, we find that divergence in traits related to migratory behaviour and sexual signalling, as well as geographic distance, together explain over 70% of genome‐wide divergence among populations. Controlling for IBD, we find 42% of genomewide divergence is attributable to IBA through pairwise differences in traits related to migratory behaviour and sexual signalling alone. By (i) combining these results with prior studies of how selection shapes morphological differentiation and (ii) accounting for spatial autocorrelation, we infer that morphological adaptation plays a large role in shaping population‐level differentiation in this group of closely related populations.  相似文献   

20.
The spatial genetic structure of populations is strongly influenced by current and historical patterns of gene flow and drift, which in the simplest case, is limited by geographic distance. We examined the microspatial genetic structure within 33 populations of song sparrows (Melospiza melodia) which included eight subspecies located across coastal areas in southern British Columbia (BC) and California. We also examined the effect of water barriers and local density estimates on genetic structuring. Across both regions, positive genetic structure was detectable at distances of less than 10 km. Genetic divergence was highest in Californian subspecies, perhaps due to reduced gene flow across sub-specific contact zones. In BC, populations distributed across islands displayed greater genetic structuring over similar spatial scales than those across mainland sites, supporting the prediction that water barriers reduce gene flow in this species. Our results confirm both the expectation for fine-scale genetic structure in these generally sedentary subspecies, and the role of landscape features in generating geographic variation in genetic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号