首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
硒对植物吸收转运镉影响机制的研究进展   总被引:1,自引:0,他引:1  
硒是人和动物必需的微量营养元素之一,在植物中可抵御体内自由基伤害、提高作物产量和质量,并且可以有效缓解植物重金属的胁迫和积累。综述了在不同植物中硒对镉吸收转运影响的研究进展,探讨了硒缓解镉胁迫的机制,以期为采取措施降低农产品镉污染提供参考。  相似文献   

2.
张敏  谢运球 《生态科学》2007,26(4):367-373
硼和镉两种元素是影响油菜产量和品质的两个重要因素。硼是植物生长所必需的微量元素,施硼是油菜种植的必需环节;镉是植物生长的非必要元素,易在油菜体内富集,可能通过食物链危害人体健康。本文主要从镉含量与油菜食品安全品质角度考虑,阐述了油菜对镉的积累和耐受机制;同时,概括了前人总结的硼对油菜的产量和品质的影响。最后,结合本人研究区广西地区土壤有效硼含量低,全镉含量高的现状,提出运用硼镉交互作用机理,通过施加适量硼肥,提高油菜的产量和品质,消除土壤镉的潜在危害,从本质上改善该地区土壤存在的低硼高镉现状。  相似文献   

3.
土壤-植物体系中硒与重金属镉的相互作用   总被引:3,自引:0,他引:3  
硒是人体重要的功能元素之一,近年来通过食物补硒成为研究热潮,富硒食品的安全问题备受关注。阐述了土壤中的硒与镉的存在形态及其转化的影响因素,并结合近年来的研究成果,介绍了硒与镉在植物体内的互作效应及其机理研究现状,以期为今后更深入开展硒与镉交互作用机制的研究提供参考,并为农作物富硒阻隔技术体系的建立提供科学依据。  相似文献   

4.
董艺婷  崔岩山  王庆仁 《生态学报》2003,23(5):1018-1024
为了进一步研究镉、锌、铅 3种重金属元素间的相互作用以及对植物吸收重金属能力的影响 ,在模拟单一重金属污染试验研究的基础上 ,采用正交回归设计方案 ,研究了 Cd、Zn、Pb复合污染情况下紫花苜蓿和披碱草两种敏感性植物对 3种重金属的吸收效应。结果表明 ,在单一污染条件下 ,镉元素对紫花苜蓿生长的影响大于锌、铅 ,铅元素对披碱草生长的影响大于锌、镉 ;紫花苜蓿对于镉的吸收累积显著高于披碱草 ,植物内镉元素浓度最高达到 1 0 88.5 mg/kg,而披碱草对于铅元素的吸收则高于紫花苜蓿 ,植物内铅元素浓度最高达到 1 3 4 5 .5 mg/kg。在复合污染条件下 ,两种植物对铅、锌和铅、镉的吸收在不同浓度范围内分别存在存在着协同效应和拮抗效应 ;同时两种植物对锌、镉元素在实验涉及浓度范围内都存在着拮抗效应。这对于深入研究复合污染条件下重金属的土壤环境化学行为 ,对植物的综合毒性以及不同植物对重金属的吸收累积效应等 ,具有一定的参考意义  相似文献   

5.
单一与复合污染条件下两种敏感性植物对Cd、Zn、Pb的吸收   总被引:7,自引:0,他引:7  
为了进一步研究镉、锌、铅3种重金属元素间的相互作用以及对植物吸收重金属能力的影响,在模拟单一重金属污染试验研究的基础上,采用正交回归设计方案.研究了Cd、Zn、Pb复合污染情况下紫花苜蓿和披碱草两种敏感性植物对3种重金属的吸收效应。结果表明,在单一污染条件下.银元素对紫花苜蓿生长的影响大于锌、镉、铅元素对披碱草生长的影响大于锌、镉,紫花苜蓿对于镉的吸收累积显著高于:披碱草,植物内银元素浓度最高达到1088.5mg/kg。而披碱草对于铅元素的吸收则高于紫花苜蓿。植物内铅元素浓度最高达到1345.5mg/kg。在复合污染条件下.两种植物对铅、锌和铅、镉的吸收在不同浓度范围内分别存在存在着协同效应和桔抗效应;同时两种植物对锌、银元素在实验涉及浓度范围内都存在着拮抗效应。这对于深入研究复合污染条件下重金属的土壤环境化学行为,对植物的综合毒性以及不同植物对重金属的吸收累积效应等,具有一定的参考意义。  相似文献   

6.
植物吸收、转运和积累镉的机理研究进展   总被引:7,自引:0,他引:7  
重金属镉(Cd)虽然不是植物生长的必需矿质元素,但依然能被植物吸收。且部分植物具有富集镉的特点,从而导致农产品镉含量超标,并通过食物链危害人类健康。研究植物吸收、转运和积累Cd的机理,对于培育低镉作物品种、降低农产品镉含量,以及选育超富集镉植物,修复镉污染土壤具有重要意义。从影响植物吸收Cd的因子,植物吸收、转运和积累Cd的机理以及植物拒Cd和富集Cd的分子机制等方面进行综述,以期为低镉作物的研究以及Cd污染土壤的综合治理提供一些参考。  相似文献   

7.
水稻对土壤中镉的吸收及其调控措施   总被引:20,自引:2,他引:18  
对土壤 水稻系统镉污染的影响和植物对重金属镉吸收的研究现状进行综述 ,系统阐述土壤受镉污染后水稻生长性状的变化以及水稻吸收的镉在各器官中的分配规律 ,同时分析水分控制、肥料施用和缓解镉污染的改良剂等农业管理措施对水稻吸收镉的影响  相似文献   

8.
镉对植物的生理生态效应的研究进展   总被引:125,自引:6,他引:119  
张金彪  黄维南 《生态学报》2000,20(3):514-523
综述了镉(Cd)在植物中的积累、分布、形态和植物对镉毒害的反应及影响镉毒性因素的研究进展,并指出存在的问题和发展前景。  相似文献   

9.
2005年4—12月逐月对长江河口九段沙下沙湿地生态系统主要湿地植物群落进行样方调查与样品采集,通过对海三棱藨草(Scirpus mariqueter)、互花米草(Spartina alterni-flora)和芦苇(Phragmites australis)3种植物样品中N、P、K元素含量分析与生物量测定,揭示了下沙主要类型湿地的植物N、P、K元素的含量、分布、贮量与动态变化特征。结果表明:3种湿地植物N、P、K元素含量、分布、贮量与动态特征均各具特点。不同植物以及同一植物不同构件营养元素含量与分布均存在较明显的差异。营养元素在不同植物与同一植物不同器官含量排序的差异明显。N、P、K贮量分布特征因湿地植物种类、构件以及生物量不同而异。植物中营养元素含量与贮量的分布特征存在差异,其原因在于,与营养元素含量相比,生物量是制约植物营养元素贮量的主要因子。下沙湿地3种湿地植物及其构件的营养元素含量与贮量一般都低于上沙湿地。3种湿地植物营养元素均表现出明显的季节动态,一般生长初期营养元素含量高,生长停滞期含量低。3种湿地植物N、P、K含量的动态特征存在差异,总趋势为N、P、K含量随生长过程的进行而下降,相对下降速度排序为:KNP。受局地环境条件影响,上沙与下沙湿地的植物N、P、K元素的含量、分布、贮量与动态变化特征存在差异。  相似文献   

10.
森林生态系统镉污染研究进展   总被引:19,自引:1,他引:18  
黄益宗  朱永官 《生态学报》2004,24(1):101-108
综述了近几十年来国内外有关森林生态系统镉污染的研究进展。森林生态系统镉污染的来源有自然来源和人为来源 ,自然森林生态系统和人工森林生态系统的镉污染来源有明显差异。林地污泥应用、污灌、含镉磷肥的施用以及大气沉降等是人工森林生态系统镉污染的主要来源。镉污染对森林生态系统中的生产者、消费者和分解者均有毒害作用。森林生态系统的结构和功能特性使其在环境镉污染监测和防治中起着重要作用。  相似文献   

11.
沙田柚树体营养特性研究   总被引:4,自引:0,他引:4  
研究梅州沙田柚(CitrusgrandisOsbeckcv.Shatianyou)结果树叶片营养特点、树体中营养元素的季节性变化及叶片营养元素含量与果实品质的相关性.结果表明,营养叶中的各元素在不同的生育时期含量均有不同,树体内各营养元素间的关系存在着相互促进和相互抑制的复杂作用;叶片和果实中各元素含量的年周期变化规律不同,说明沙田柚在不同的生育时期对各元素的需求量及它们之间的需求比例有不同要求;结果还表明,沙田柚的树体养分含量在7-9月份对柚果品质影响最大,与果实全糖相关性最显著的是大量元素Ca和P,其次是微量元素B、Cu、Mo、Zn等.  相似文献   

12.
The experiment assessed the variability of in seven clones of willow plants of high biomass production (Salix smithiana S-218, Salix smithiana S-150, Salix viminalis S-519, Salix alba S-464, Salix ’Pyramidalis’ S-141, Salix dasyclados S-406, Salix rubens S-391). They were planted in a pots for three vegetation periods in three soils differing in the total content of risk elements. Comparing the calculated relative decrease of total metal contents in soils, the phytoextraction potential of willows was obtained for cadmium (Cd) and zinc (Zn), moderately contaminated Cambisol and uncontaminated Chernozem, where aboveground biomass removed about 30% Cd and 5% Zn of the total element content, respectively. The clones showed variability in removing Cd and Zn, depending on soil type and contamination level: S. smithiana (S-150) and S. rubens (S-391) demonstrated the highest phytoextraction effect for Cd and Zn. For lead (Pb) and arsenic (As), the ability to accumulate the aboveground biomass of willows was found to be negligible in both soils. The results confirmed that willow plants show promising results for several elements, mainly for mobile ones like cadmium and zinc in moderate levels of contamination. The differences in accumulation among the clones seemed to be affected more by the properties of clones, not by the soil element concentrations or soil properties. However, confirmation and verification of the results in field conditions as well as more detailed investigation of the mechanisms of cadmium uptake in rhizosphere of willow plants will be determined by further research.  相似文献   

13.
The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2 TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry. Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd. Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to 10 μmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that this exposure resulted in a significant accumulation of copper and zinc but not of the other elements measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied. Exposed to 30 μmol/l of the element, manganese showed the highest inhibition and copper the lowest on cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant increase in the accumulation of zinc. There was a significant decrease in manganese from 5 μmol Cd/l exposure, and no variation was observed with copper.  相似文献   

14.
In order to explore the associations between trace elements in dietary intake and the other three biological media (blood, urine, or feces) and inter-element interactions among the latter, we simultaneously collected 72-h diet duplicates, whole blood, and 72-h urine and feces from 120 free-living healthy males in China. Correlations among the toxic (cadmium [Cd], lead [Pb]), and nutritionally essential (zinc [Zn], copper [Cu], iron [Fe], manganese [Mn], selenium [Se], iodine [I]) elements were evaluated using Spearman rank correlation analysis based on analytical data determined by inductively coupled plasma-mass spectrometry. Dietary Cd intakes were highly correlated with the fecal Cd and blood Cd levels. Inverse correlations were found for Fe–Cd and Fe–Pb in both diet versus blood and diet versus feces. Cd–Zn and Cd–Se were significantly directly correlated in the urine and feces. Cd–Se and Pb–Se were negatively correlated in blood. In addition, there existed an extremely significant association between urinary Se and urinary I. Moreover, the other two highly direct correlations were found for Se–Fe and for I–Fe in urine. Improved knowledge regarding their mutual associations is considered to be of fundamental importance to understand more the complex interrelationships in trace element metabolism.  相似文献   

15.
This study reports age-related changes in 7 element (iron, copper, zinc, manganese, mercury, cadmium and lead) concentrations in the liver, kidney and brain of male and female Sprague-Dawley rats from 1 to 364 days of age. Atomic absorption spectrometry was used for the measurements. Copper, mercury and cadmium in the male and female kidneys increased from weaning until 127 days of age, as did iron concentrations in the female liver and kidney. After 127 days, especially, the copper concentration in the female kidney and cadmium concentration in the male and female kidney increased further. Consistent and statistically significant (P less than 0.05) sex differences in element concentrations were found for three elements (iron, copper and zinc). Except for the zinc concentration in the liver from 50 to 72 days, iron (in liver and kidney), zinc (in kidney) and copper (in liver, kidney and brain) concentrations in female rats during the adult stage, were all higher than those of male rats. Isolated differences for other elements (manganese, mercury and cadmium) were also found. The data will be helpful when setting up long-term animal investigations of the biological effect of elements.  相似文献   

16.
Trace elements in agroecosystems and impacts on the environment.   总被引:21,自引:0,他引:21  
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.  相似文献   

17.
For any element which is incorporated into biomass, the biogeochemical cycle of that element in a given ecosystem will be coupled to that of any other element similarly incorporated. The mutual interaction of two such cycles is examined using a simple model in which each cycle is constrained into four compartments. In each cycle the assimilation rate (primary productivity) is related in a non-linear fashion to the two nutrients and to biomass. The interactions are represented by combining a hyperbolic dependence for each nutrient (involving a "Michaelis constant") with a logistic equation governing the dependence of rate on biomass (involving a "carrying capacity"). The response of the model to perturbation (e.g. mobilization of an abiotic reserve) is strongly governed by the values assigned to these constants. The coupled cycles can exhibit positive feed-back with anomalous responses of the steady state and time-dependent solutions may exhibit complex oscillatory behaviour. Both the steady-state sensitivity and the kinetic behaviour of such coupled systems are simplified if the range of atomic ratios permitted by the assimilation process is restricted. It will therefore be of importance to determine under what conditions the assimilation rates for different elements are governed by mass-action effects (Liebig's Law) or by stoichiometric constraints (Redfield ratios).  相似文献   

18.
Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics and biological factors determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contamination may arise from multiple sources of toxic elements that may exist as different species that impact bioavailability. In turn, the bioaccessibility/bioavailability of soil and dust contaminants directly impacts human health risk. Research efforts focusing on development and application of in vitro and in vivo methods to measure the bioaccessibility/bioavailability of metal-contaminated soils have advanced in recent years. The objective of this workshop was to focus on developments in assessing the bioaccessibility/bioavailability of arsenic-contaminated soils, metals’ contamination in urban Canadian residences and potential children's exposures to toxic elements in house dust, an urban community-based study (i.e., West Oakland Residential Lead Assessment), bioavailability studies of soil cadmium, chromium, nickel, and mercury and human exposures to contaminated Brownfield soils. These presentations covered issues related to human health and bioavailability along with the most recent studies on community participation in assessing metals’ contamination, studies of exposures to residential contamination, and in vitro and in vivo methods development for assessing the bioaccessibility/bioavailability of metals in soils and dusts.  相似文献   

19.
土壤中镉、铅、锌及其相互作用对作物的影响   总被引:18,自引:0,他引:18       下载免费PDF全文
 通过作物盆栽模拟试验(砂壤质褐土、pH值8.2)揭示:土壤中分别施入镉(CdCl2)、铅[Pb(CH3COO)2]或锌(ZnSO4)其影响表现为,植物各器官镉的含量超过对照植物的数倍至500倍。土壤镉浓度<5ppm和<10ppm分别造成某些蔬菜和水稻的污染。铅主要积累在植物根部,土壤铅污染对作物的影响较小。锌主要积累在植物叶片和根部,对水稻产生生长抑制的土壤锌浓度临界值不大于200ppm,此浓度对旱作无影响。土壤中同时施入镉和铅,植物对镉的吸收增加。而土壤中镉的增加却减少了植物体内铅的含量。土壤中由于镉、锌或铅、锌相互作用的结果,水稻对它们的吸收都有增加。在旱地土壤锌浓度的增高,降低了植物对镉、铅的吸收。镉、铅、锌同时施入土壤由于相互作用的结果,除锌之外,植物对镉、铅的吸收有明显下降。评价土壤重金属污染,不仅要看它们的含量及其存在形态,而且要分析它们之间的相互作用(促进或拮抗)特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号