首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood vessels are mainly composed of intraluminal endothelial cells (ECs) and mural cells adhering to the ECs on their basal side. Immature blood vessels lacking mural cells are leaky; thus, the process of mural cell adhesion to ECs is indispensable for stability of the vessels during physiological angiogenesis. However, in the tumor microenvironment, although some blood vessels are well-matured, the majority is immature. Because mural cell adhesion to ECs also has a marked anti-apoptotic effect, angiogenesis inhibitors that destroy immature blood vessels may not affect mature vessels showing more resistance to apoptosis. Activation of Tie2 receptor tyrosine kinase expressed in ECs mediates pro-angiogenic effects via the induction of EC migration but also facilitates vessel maturation via the promotion of cell adhesion between mural cells and ECs. Therefore, inhibition of Tie2 has the advantage of completely inhibiting angiogenesis. Here, we isolated a novel small molecule Tie2 kinase inhibitor, identified as 2-methoxycinnamaldehyde (2-MCA). We found that 2-MCA inhibits both sprouting angiogenesis and maturation of blood vessels, resulting in inhibition of tumor growth. Our results suggest a potent clinical benefit of disrupting these two using Tie2 inhibitors.  相似文献   

2.
The tyrosine kinase receptor Tie2 was initially identified as a specific vascular growth factor that governed several properties of endothelial cells under both physiological and pathological conditions. It was subsequently found that angiopoietins, the natural ligands of Tie2, modulate Tie2-dependent signaling, which in turn regulates the survival and apoptosis of endothelial cells, controls vascular permeability, and regulates the capillary sprouting that occurs during normal angiogenesis such as through development and ovarian remodeling. Tie2 also seems to play a crucial role in several vascular abnormalities, such as familial venous malformations. Beyond its critical role in angiogenesis, Tie2 also appears to maintain the long-term population and quiescent status of hematopoietic stem cells in the bone marrow stem cell niche. In cancer, Tie2 was originally found to be overexpressed in tumoral vessels. More recently, our laboratory and others have found that Tie2 is also expressed outside the vascular compartment in several types of cancer, including leukemia and solid neoplasms such as gastric tumors, breast tumors, and gliomas. The role of Tie2 in these tumoral cells is currently being explored. In this regard, our group reported the importance of Tie2-expressing glioma cells in their adhesion to the tumoral microenvironment. Because cancer may be considered as a complex organ with several cellular lineages coexisting in the same tumor, the expression of Tie2 by different tumoral compartments makes this cellular receptor an attractive target for cancer therapy.  相似文献   

3.
The regulatory elements of the Tie2/Tek promoter are commonly used in mouse models to direct transgene expression to endothelial cells. Tunica intima endothelial kinase 2 (Tie2) is also expressed in hematopoietic cells, although this has not been fully characterized. We determine the lineages of adult hematopoietic cells derived from Tie2‐expressing populations using Tie2‐Cre;Rosa26R‐EYFP mice. In Tie2‐Cre;Rosa26R‐EYFP mice, analysis of bone marrow cells showed Cre‐mediated recombination in 85% of the population. In adult bone marrow and spleen, we analyzed subclasses of early hematopoietic progenitors, T cells, monocytes, granulocytes, and B cells. We found that ~ 84% of each lineage was EYFP+, and nearly all cells that come from Tie2‐expressing lineages are CD45+, confirming widespread contribution to definitive hematopoietic cells. In addition, more than 82% of blood cells within the embryonic yolk sac were of Tie2+ origin. Our findings of high levels of Tie2‐Cre recombination in the hematopoietic lineage have implications for the use of the Tie2‐Cre mouse as a lineage‐restricted driver strain. genesis 48:563–567, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
There is a growing interest in understanding the complex interactions between bone marrow-derived myeloid-lineage cells and angiogenesis in tumors. Such interest has been revived recently by the observation that tumor-infiltrating myeloid cells convey proangiogenic programs that can counteract the activity of antiangiogenic drugs in mouse tumor models. Among myeloid cells, Tie2-expressing monocytes (TEMs) appear to have nonredundant function in promoting tumor angiogenesis and growth in mouse models. The identification and functional characterization of TEMs in mice and humans may provide novel molecular targets for anticancer therapy. Moreover, TEMs may be exploited to deliver antitumor drugs specifically to the tumor microenvironment.  相似文献   

5.
Recent results suggest that bone marrow (BM)-derived hematopoietic cells are major components of tumor stroma and play crucial roles in tumor growth and angiogenesis. An E-type prostaglandin is known to regulate angiogenesis. We examined the role of BM-derived cells expressing an E-type prostaglandin receptor subtype (EP3) in tumor-induced angiogenesis and tumor growth. The replacement of wild-type (WT) BM with BM cells (BMCs) from green fluorescent protein (GFP) transgenic mice revealed that the stroma developed via the recruitment of BMCs. Selective knockdown of EP3 by recruitment of genetically modified BMCs lacking EP3 receptors was performed by transplantation of BMCs from EP3 knockout (EP3−/−) mice. Tumor growth and tumor-associated angiogenesis were suppressed in WT mice transplanted with BMCs from EP3−/− mice, but not in mice transplanted with BMCs from either EP1−/−, EP2−/−, or EP4−/− mice. Immunohistochemical analysis revealed that vascular endothelial growth factor (VEGF) expression was suppressed in the stroma of mice transplanted with BMCs from EP3−/− mice. EP3 signaling played a significant role in the recruitment of VEGFR-1- and VEGFR-2-positive cells from the BM to the stroma. These results indicate that the EP3 signaling expressed in bone marrow-derived cells has a crucial role in tumor-associated angiogenesis and tumor growth with upregulation of the expression of the host stromal VEGF together with the recruitment of VEGFR-1/VEGFR-2-positive. The present study suggests that the blockade of EP3 signaling and the recruitment of EP3-expressing stromal cells may become a novel strategy to treat solid tumors.  相似文献   

6.
beta1 integrin (encoded by Itgb1) is established as a regulator of angiogenesis based upon the phenotypes of complete knockouts of beta1 heterodimer partners or ligands and upon antibody inhibition studies in mice. Its direct function in endothelial cells (ECs) in vivo has not been determined because Itgb1(-/-) embryos die before vascular development. Excision of Itgb1 from ECs and a subset of hematopoietic cells, using Tie2-Cre, resulted in abnormal vascular development by embryonic day (e) 8.5 and lethality by e10.5. Tie1-Cre mediated a more restricted excision of Itgb1 from ECs and hematopoietic cells and resulted in embryonic lethal vascular defects by e11.5. Capillaries of the yolk sacs were disorganized, and the endothelium of major blood vessels and of the heart was frequently discontinuous in mutant embryos. We also found similar vascular morphogenesis defects characterized by EC disorganization in embryonic explants and isolated ECs. Itgb1-null ECs were deficient in adhesion and migration in a ligand-specific fashion, with impaired responses to laminin and collagens, but not to fibronectin. Deletion of Itgb1 reduced EC survival, but did not affect proliferation. Our findings demonstrate that beta1 integrin is essential for EC adhesion, migration and survival during angiogenesis, and further validate that therapies targeting beta1 integrins may effectively impair neovascularization.  相似文献   

7.
The involvement of endothelial progenitor cells in tumor angiogenesis   总被引:11,自引:0,他引:11  
Endothelial progenitor cells (EPCs) have been isolated from peripheral blood CD34, VEGFR-2, or AC 133 (CD133) antigen-positive cells, which may home to site of neovascularization and differentiate into endothelial cells in situ. Endothelial cells contribute to tumor angiogenesis, and can originate from sprouting or co-option of neighbouring pre-existing vessels. Emerging evidence indicate that bone marrow-derived circulating EPCs can contribute to tumor angiogenesis and growth of certain tumors. This review article will summarize the literature data concerning this new role played by EPCs in tumor angiogenesis.  相似文献   

8.
The formation of new blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis) promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC) can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.  相似文献   

9.
Adult bone marrow (BM) contains cells capable of differentiating along hematopoietic (Lin(+)) or non-hematopoietic (Lin(-)) lineages. Lin(-) hematopoietic stem cells (HSCs) have recently been shown to contain a population of endothelial precursor cells (EPCs) capable of forming blood vessels. Here we show that intravitreally injected Lin(-) BM cells selectively target retinal astrocytes, cells that serve as a template for both developmental and injury-associated retinal angiogenesis. When Lin(-) BM cells were injected into neonatal mouse eyes, they extensively and stably incorporated into forming retinal vasculature. When EPC-enriched HSCs were injected into the eyes of neonatal rd/rd mice, whose vasculature ordinarily degenerates with age, they rescued and maintained a normal vasculature. In contrast, normal retinal angiogenesis was inhibited when EPCs expressing a potent angiostatic protein were injected. We have demonstrated that Lin(-) BM cells and astrocytes specifically interact with one another during normal angiogenesis and pathological vascular degeneration in the retina. Selective targeting with Lin(-) HSC may be a useful therapeutic approach for the treatment of many ocular diseases.  相似文献   

10.
Tumor-derived exosomes are emerging mediators of tumorigenesis. We explored the function of melanoma-derived exosomes in the formation of primary tumors and metastases in mice and human subjects. Exosomes from highly metastatic melanomas increased the metastatic behavior of primary tumors by permanently 'educating' bone marrow progenitors through the receptor tyrosine kinase MET. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites and reprogrammed bone marrow progenitors toward a pro-vasculogenic phenotype that was positive for c-Kit, the receptor tyrosine kinase Tie2 and Met. Reducing Met expression in exosomes diminished the pro-metastatic behavior of bone marrow cells. Notably, MET expression was elevated in circulating CD45(-)C-KIT(low/+)TIE2(+) bone marrow progenitors from individuals with metastatic melanoma. RAB1A, RAB5B, RAB7 and RAB27A, regulators of membrane trafficking and exosome formation, were highly expressed in melanoma cells. Rab27A RNA interference decreased exosome production, preventing bone marrow education and reducing, tumor growth and metastasis. In addition, we identified an exosome-specific melanoma signature with prognostic and therapeutic potential comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. Our data show that exosome production, transfer and education of bone marrow cells supports tumor growth and metastasis, has prognostic value and offers promise for new therapeutic directions in the metastatic process.  相似文献   

11.
Nicotine enhances neovascularization and promotes tumor growth   总被引:7,自引:0,他引:7  
Solid tumors require vascularization for their growth. Bone marrow-derived endothelial progenitor cells participate in tumor angiogenesis. Here, we show that nicotine markedly accelerated growth of colon cancer cells inoculated subcutaneously in mice but had no effect on proliferation of carcinoma cells in vitro. We found that the tumor growth was associated with increased vascularization of the tumor and that bone marrow-derived cells contributed to the formation of the new blood vessels. Our findings show that nicotine promotes tumor growth, at least in part, by stimulating tumor-associated neovascularization.  相似文献   

12.
Expression of a retrovirally encoded allogeneic MHC class I gene in bone marrow-derived cells can be used to induce tolerance to the product of the retrovirally transduced gene. In this work we examined whether expression of a retrovirally transduced allogeneic MHC class I gene in bone marrow-derived cells from recombinase-activating gene-1 (RAG-1)-deficient mice was sufficient to induce tolerance when transplanted into conditioned hosts together with bone marrow from MHC-matched wild-type mice. Reconstitution of mice with either MHC-matched RAG-1-deficient or wild-type bone marrow transduced with the allogeneic MHC class I gene H-2K(b) led to long-term expression of K(b) on the surface of bone marrow-derived hematopoietic lineages. T cells from mice reconstituted with H-2K(b)-transduced wild-type bone marrow were tolerant to K(b). In contrast, expression of K(b) in the periphery of mice reconstituted with a mixture of retrovirally transduced RAG-1-deficient bone marrow and mock-transduced wild-type bone marrow fell below detectable levels by 4 wk after transplantation. T cells that developed in these mice appeared to be hyporesponsive to K(b), demonstrating that expression of K(b) on bone marrow-derived APCs was not sufficient to induce tolerance. Our data suggest that induction of tolerance in molecular chimeras requires expression of the retrovirally transduced allogeneic MHC Ag on the surface of mature lymphocytes that populate the host thymus.  相似文献   

13.
14.
Myelomonocytic cells are sufficient for therapeutic cell fusion in liver   总被引:21,自引:0,他引:21  
Liver repopulation with bone marrow-derived hepatocytes (BMHs) can cure the genetic liver disease fumarylacetoacetate hydrolase (Fah) deficiency. BMHs emerge from fusion between donor bone marrow-derived cells and host hepatocytes. To use such in vivo cell fusion efficiently for therapy requires knowing the nature of the hematopoietic cells that fuse with hepatocytes. Here we show that the transplantation into Fah(-/-) mice of hematopoietic stem cells (HSCs) from lymphocyte-deficient Rag1(-/-) mice, lineage-committed granulocyte-macrophage progenitors (GMPs) or bone marrow-derived macrophages (BMMs) results in the robust production of BMHs. These results provide direct evidence that committed myelomonocytic cells such as macrophages can produce functional epithelial cells by in vivo fusion. Because stable bone marrow engraftment or HSCs are not required for this process, macrophages or their highly proliferative progenitors provide potential for targeted and well-tolerated cell therapy aimed at organ regeneration.  相似文献   

15.
Increasing evidence implicates an important role for a variety of bone marrow derived cells (BMDCs) in tumor angiogenesis and metastatic tumor growth. These cells are derived either from the hematopoietic or mesenchymal cell lineage, and they are distinguished, in part, by the expression of the panhematopoietic marker ‐ CD45. Some of these cell populations can colonize tumors perivascularily, and appear to promote angiogenesis and tumor cell proliferation by paracraine mechanisms, whereas others can contribute “directly” to the growth of tumor vessel capillaries or metastases. In this review we focus in particular on the role of hemangiocytes or recruited bone marrow derived circulating cells (RBCCs) in neovascularization, the contribution of VEGFR1+ hematopoietic stem cells and endothelial precursor cells in metastasis, and the involvement of myeloid derived suppressor CD11b+/Gr‐1+ cells in the resistance of tumors to certain antiangiogenic drugs, e.g., VEGF blocking antibodies.  相似文献   

16.
It has been shown that bone marrow-derived stem cells can form a major fraction of the tumor endothelium in mouse tumors. To determine the role of such cells in human tumor angiogenesis, we studied six individuals who developed cancers after bone marrow transplantation with donor cells derived from individuals of the opposite sex. By performing fluorescence in situ hybridization (FISH) with sex chromosome-specific probes in conjunction with fluorescent antibody staining, we found that such stem cells indeed contributed to tumor endothelium, but at low levels, averaging only 4.9% of the total. These results illustrate substantial differences between human tumors and many mouse models with respect to angiogenesis and have important implications for the translation of experimental antiangiogenic therapies to the clinic.  相似文献   

17.
Solid tumors require neovascularization for their growth. Recent evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs) contribute to tumor angiogenesis. We show here that granulocyte colony-stimulating factor (G-CSF) markedly promotes growth of the colon cancer inoculated into the subcutaneous space of mice, whereas G-CSF had no effect on cancer cell proliferation in vitro. The accelerated tumor growth was associated with enhancement of neovascularization in the tumor. We found that bone marrow-derived cells participated in new blood vessel formation in tumor. Our findings suggest that G-CSF may have potential to promote tumor growth, at least in part, by stimulating angiogenesis in which bone marrow-derived EPCs play a role.  相似文献   

18.
The Mixed Lineage Leukemia (MLL) gene is essential for embryonic hematopoietic stem cell (HSC) development, but its role during adult hematopoiesis is unknown. Using an inducible knockout model, we demonstrate that Mll is essential for the maintenance of adult HSCs and progenitors, with fatal bone marrow failure occurring within 3 weeks of Mll deletion. Mll-deficient cells are selectively lost from mixed bone marrow chimeras, demonstrating their failure to self-renew even in an intact bone marrow environment. Surprisingly, HSCs lacking Mll exhibit ectopic cell-cycle entry, resulting in the depletion of quiescent HSCs. In contrast, Mll deletion in myelo-erythroid progenitors results in reduced proliferation and reduced response to cytokine-induced cell-cycle entry. Committed lymphoid and myeloid cells no longer require Mll, defining the early multipotent stages of hematopoiesis as Mll dependent. These studies demonstrate that Mll plays selective and independent roles within the hematopoietic system, maintaining quiescence in HSCs and promoting proliferation in progenitors.  相似文献   

19.
Adult 'endothelial progenitor cells'. Renewing vasculature   总被引:15,自引:0,他引:15  
During embryogenesis, endothelial progenitor cells participate in the initial processes of primitive blood vessel formation (vasculogenesis). It has become evident that progenitors to vascular endothelial cells also exist in the adult. Endothelial progenitors normally reside in the adult bone marrow but may become mobilized into circulation by cytokine or angiogenic growth factor signals from the periphery, enter extravascular tissue, and promote de novo vessel formation by virtue of physically integrating into vessels and/or supplying growth factors (adult vasculogenesis). For that reason, autologous endothelial progenitors, mobilized in situ or transplanted, has become a major target of therapeutic revascularization approaches to ischemic disease and endothelial injury. Moreover, endothelial progenitors represent a potential target of strategies to block tumor growth.  相似文献   

20.
Evi-1 has been recognized as one of the dominant oncogenes associated with murine and human myeloid leukemia. Here, we show that hematopoietic stem cells (HSCs) in Evi-1-deficient embryos are severely reduced in number with defective proliferative and repopulating capacity. Selective ablation of Evi-1 in Tie2(+) cells mimics Evi-1 deficiency, suggesting that Evi-1 function is required in Tie2(+) hematopoietic stem/progenitors. Conditional deletion of Evi-1 in the adult hematopoietic system revealed that Evi-1-deficient bone marrow HSCs cannot maintain hematopoiesis and lose their repopulating ability. In contrast, Evi-1 is dispensable for blood cell lineage commitment. Evi-1(+/-) mice exhibit the intermediate phenotype for HSC activity, suggesting a gene dosage requirement for Evi-1. We further demonstrate that disruption of Evi-1 in transformed leukemic cells leads to significant loss of their proliferative activity both in vitro and in vivo. Thus, Evi-1 is a common and critical regulator essential for proliferation of embryonic/adult HSCs and transformed leukemic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号