首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular matrix plays a dynamic role during the process of wound healing, embryogenesis and tissue regeneration. Caudal fin regeneration in zebrafish is an excellent model to study tissue and skeletal regeneration. We have analyzed the expression pattern of some of the well characterized ECM proteins during the process of caudal fin regeneration in zebrafish. Our results show that a transitional matrix analogous to the one formed during newt skeletal and heart muscle regeneration is synthesized during fin regeneration. Here we demonstrate that a provisional matrix rich in hyaluronic acid, tenascin C, and fibronectin is synthesized following amputation. Additionally, we observed that the link protein Hapln1a dependent ECM, consisting of Hapln1a, hyaluronan and proteoglycan aggrecan, is upregulated during fin regeneration. Laminin, the protein characteristic of differentiated tissues, showed only modest change in the expression pattern. Our findings on zebrafish fin regeneration implicates that changes in the extracellular milieu represent an evolutionarily conserved mechanism that proceeds during tissue regeneration, yet with distinct players depending on the type of tissue that is involved.  相似文献   

2.
Tenascins   总被引:1,自引:0,他引:1  
Tenascins are a family of large multimeric extracellular matrix (ECM) proteins. Vertebrates express four tenascins termed tenascin-C, -R, -X and -W present in their connective tissues. Each tenascin has a specific expression pattern. To the contrary of many other ECM proteins, tenascins promote only weak cell adhesion and do not activate cell spreading. They have been classified as anti-adhesive, adhesion-modulating or even repellent ECM proteins. Tenascin-C and tenascin-R deficient mice show abnormalities in the nervous system and tenascin-C deficient mice, in addition, have defects in several regenerative processes. Mice lacking tenascin-X display hyperelastic skin much like Ehlers Danlos patients with mutations in their tenascin-X gene. Since tenascin-C is highly overexpressed in tumor stroma antibodies against tenascin-C have been used in tumor diagnosis and therapy. Since tenascins are known to influence cell shape, migration and growth they represent good candidate molecules for inclusion in artificial bioengineered tissue implants.  相似文献   

3.
4.
Urodele amphibians regenerate appendages through the recruitment of progenitor cells into a blastema that rebuilds the lost tissue. Blastemal formation is accompanied by extensive remodeling of the extracellular matrix. Although this remodeling process is important for appendage regeneration, it is not known whether the remodeled matrix directly influences the generation and behavior of blastemal progenitor cells. By integrating in vivo 3-dimensional spatiotemporal matrix maps with in vitro functional time-lapse imaging, we show that key components of this dynamic matrix, hyaluronic acid, tenascin-C and fibronectin, differentially direct cellular behaviors including DNA synthesis, migration, myotube fragmentation and myoblast fusion. These data indicate that both satellite cells and fragmenting myofibers contribute to the regeneration blastema and that the local extracellular environment provides instructive cues for the regenerative process. The fact that amphibian and mammalian myoblasts exhibit similar responses to various matrices suggests that the ability to sense and respond to regenerative signals is evolutionarily conserved.  相似文献   

5.
The extracellular matrix (ECM) is an essential feature of development, tissue homeostasis and recovery from injury. How the ECM responds dynamically to cellular and soluble components to support the faithful repair of damaged tissues in some animals but leads to the formation of acellular fibrotic scar tissue in others has important clinical implications. Studies in highly regenerative organisms such as the zebrafish and the salamander have revealed a specialist formulation of ECM components that support repair and regeneration, while avoiding scar tissue formation. By comparing a range of different contexts that feature scar-less healing and full regeneration vs. scarring through fibrotic repair, regenerative therapies that incorporate ECM components could be significantly enhanced to improve both regenerative potential and functional outcomes. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.  相似文献   

6.
Leukaemia inhibitory factor (LIF) has been reported to specifically enhance myoblast proliferation in vitro and increase the number and size of myotubes in regenerating skeletal muscle in vivo. The present study specifically tests the effect of LIF on myoblast replication in vivo. Administration of exogenous LIF by slow release alginate gels in vivo sustained the level of myoblast proliferation at 2 days in regenerating crush-injured muscle. Since the extracellular matrix (ECM) plays an important role in regulating the effects of many growth factors, the hypothesis was tested, both in vivo and in vitro, that some of the beneficial effects of LIF are mediated by modulation of the ECM. The effects of LIF in vivo on the amount and localisation of the ECM molecules, fibronectin, tenascin-C, collagen type IV and laminin were assessed by immunohistochemistry on regenerating skeletal muscle but no influence of LIF on ECM composition was observed. In tissue culture, LIF increased BALB/c myoblast proliferation at day 3 on culture dishes coated with Matrigel and also increased the viability in vitro of BALB/c myoblasts grown under suboptimal conditions. Quantitation of the ECM produced by cultures (enzyme-linked immunosorbent assay) showed that LIF affected the amount of fibronectin, tenascin-C, collagen type IV and laminin produced by fusing myoblasts. No significant affect of LIF was seen on myotube formation either in vitro or in vivo. These combined in vitro and in vivo studies show an effect of LIF on ECM production in vitro, on myoblast survival and on in vivo myoblast replication.  相似文献   

7.
Cardiovascular diseases are accompanied by changes in the extracellular matrix (ECM) including the re-expression of fibronectin and tenascin-C splicing variants. Using human recombinant small immunoprotein (SIP) format antibodies, a molecular targeting of these proteins is of therapeutic interest. Tissue samples of the right atrial auricle from patients with coronary artery disease and valvular heart disease were analysed by PCR based ECM gene expression profiling. Moreover, the re-expression of fibronectin and tenascin-C splicing variants was investigated by immunofluoerescence labelling. We demonstrated changes in ECM gene expression depending on histological damage or underlying cardiac disease. An increased expression of fibronectin and tenascin-C mRNA in association to histological damage and in valvular heart disease compared to coronary artery disease could be shown. There was a distinct re-expression of ED-A containing fibronectin and A1 domain containing tenascin-C detectable with human recombinant SIP format antibodies in diseased myocardium. ED-A containing fibronectin showed a clear vessel positivity. For A1 domain containing tenascin-C, there was a particular positivity in areas of interstitial and perivascular fibrosis. Right atrial myocardial tissue is a valuable model to investigate cardiac ECM remodelling. Human recombinant SIP format antibodies usable for an antibody-mediated targeted delivery of drugs might offer completely new therapeutic options in cardiac diseases.  相似文献   

8.
Unlike adult mammals, adult zebrafish vigorously regenerate lost heart muscle in response to injury. The epicardium, a mesothelial cell layer enveloping the myocardium, is activated to proliferate after cardiac injury and can contribute vascular support cells or provide mitogens to regenerating muscle. Here, we applied proteomics to identify secreted proteins that are associated with heart regeneration. We found that Fibronectin, a main component of the extracellular matrix, is induced and deposited after cardiac damage. In situ hybridization and transgenic reporter analyses indicated that expression of two fibronectin paralogues, fn1 and fn1b, are induced by injury in epicardial cells, while the itgb3 receptor is induced in cardiomyocytes near the injury site. fn1, the more dynamic of these paralogs, is induced chamber-wide within one day of injury before localizing epicardial Fn1 synthesis to the injury site. fn1 loss-of-function mutations disrupted zebrafish heart regeneration, as did induced expression of a dominant-negative Fibronectin cassette, defects that were not attributable to direct inhibition of cardiomyocyte proliferation. These findings reveal a new role for the epicardium in establishing an extracellular environment that supports heart regeneration.  相似文献   

9.
Hyaluronic acid (HA) is a component of the extracellular matrix (ECM) in most vertebrate tissues and is thought to play a significant role during development, wound healing, and regeneration. In vitro studies have shown that HA enhances muscle progenitor cell recruitment and inhibits premature myotube fusion, implicating a role for this glycosaminoglycan in functional repair. However, the spatiotemporal distribution of HA during muscle growth and repair was unknown. We hypothesized that inducing hypertrophy via synergist ablation would increase the expression of HA and the HA synthases (HAS1-HAS3). We found that HA and HAS1-HAS3 were significantly upregulated within the plantaris muscle in response to Achilles tenectomy. HA concentration significantly increased 2.8-fold after 2 days but decreased towards levels comparable to age-matched controls by 14 days. Using immunohistochemistry, we found the colocalization of HAS1-HAS3 with macrophages, blood vessel epithelia, and fibroblasts varied in response to time and/or tenectomy. At the level of gene expression, only HAS1 and HAS2 significantly increased with respect to both time and tenectomy. The profiles of additional genes that influence ECM composition during muscle repair, tenascin-C, type I collagen, the HA-degrading hyaluronidases (Hyal) and matrix metalloproteinases (MMP) were also investigated. Hyal1 and Hyal2 were highly expressed in skeletal muscle but did not change after tenectomy; however, indicators of hypertrophy, MMP-2 and MMP-14, were significantly upregulated from 2 to 14 days. These results indicate that HA levels dynamically change in response to a hypertrophic stimulus and various cells may participate in this mechanism of skeletal muscle adaptation.  相似文献   

10.
Most adult mammals heal without restorative replacement of lost tissue and instead form scar tissue at an injury site. One exception is the adult MRL/MpJ mouse that can regenerate ear and cardiac tissue after wounding with little evidence of scar tissue formation. Following production of a MRL mouse ear hole, 2 mm in diameter, a structure rapidly forms at the injury site that resembles the amphibian blastema at a limb amputation site during limb regeneration. We have isolated MRL blastemal cells (MRL-B) from this structure and adapted them to culture. We demonstrate by RT-PCR that even after continuous culturing of these cells they maintain expression of several progenitor cell markers, including DLK (Pref-1), and Msx-1. We have isolated the underlying extracellular matrix (ECM) produced by these MRL-B cells using a new non-proteolytic method and studied the biological activities of this cell-free ECM. Multiplex microELISA analysis of MRL-B cell-free ECM vs. cells revealed selective enrichment of growth factors such as bFGF, HGF and KGF in the matrix compartment. The cell-free ECM, degraded by mild enzyme treatment, was active in promoting migration and proliferation of progenitor cells in vitro and accelerating wound closure in a mouse full thickness cutaneous wound assay in vivo. In vivo, a single application of MRL-B cell matrix-derived products to full thickness cutaneous wounds in non-regenerative mice, B6, induced re-growth of pigmented hair, dermis and epidermis at the wound site whereas scar tissue replaced these tissues at wound sites in mice treated with vehicle alone. These studies suggest that matrix-derived products can stimulate regenerative healing and avert scar tissue formation in adult mammals.  相似文献   

11.
Pursuing cardiac progenitors: regeneration redux   总被引:4,自引:0,他引:4  
Parmacek MS  Epstein JA 《Cell》2005,120(3):295-298
Recent studies have questioned the accepted dogma that the regenerative capacity of the heart following injury is limited. Several apparently distinct populations of resident cardiac progenitor cells may have the potential to regenerate functional heart muscle. Despite this progress, the physiologic role and therapeutic potential of cardiac resident progenitor cells remain unclear.  相似文献   

12.
Connective tissues: signalling by tenascins   总被引:1,自引:0,他引:1  
Different connective tissue cells secrete different types of tenascins. These glycoproteins contribute to extracellular matrix (ECM) structure and influence the physiology of the cells in contact with the tenascin containing environment. Tenascin-C expression is regulated by mechanical stress. It shows highest expression in connective tissue surrounding tumors, in wounds and in inflamed tissues where it may regulate cell morphology, growth, and migration by activating diverse intracellular signalling pathways. Thus, integrin and syndecan signalling is influenced by tenascin-C and the levels and/or activies of several proteins involved in intracellular signalling pathways are regulated by its presence. Tenascin-X is important for the proper deposition of collagen fibers in dermis and patients with a tenascin-X deficiency suffer from Ehlers Danlos syndrome. Tenascin-R (and -C) is prominent in the nervous system and has an impact on neurite outgrowth and synaptic functions, and tenascin-W is found in the extracellular matrix of bone, muscle, and kidney. Cell facts:bone: osteoblasts produce tenascin-C, -W cartilage: perichondrial cells produce tenascin-C tendon: fibroblasts produce tenascin-C smooth muscle cells produce tenascin-W, -C skeletal muscle: endo-, peri-, and epimysial fibroblasts produce tenascin-X dermal fibroblasts produce tenascin-X tumors: stromal fibroblasts produce tenascin-C wounds: fibroblasts produce tenascin-C nervous system: glial cells produce tenascin-R, -C, -X.  相似文献   

13.
Skeletal muscle regeneration implies the coordination of myogenesis with the recruitment of myeloid cells and extracellular matrix (ECM) remodelling. Currently, there are no specific biomarkers to diagnose the severity and prognosis of muscle lesions. In order to investigate the gene expression profile of extracellular matrix and adhesion molecules, as premises of homo‐ or heterocellular cooperation and milestones for skeletal muscle regeneration, we performed a gene expression analysis for genes involved in cellular cooperation, migration and ECM remodelling in a mouse model of acute crush injury. The results obtained at two early time‐points post‐injury were compared to a GSE5413 data set from two other trauma models. Third day post‐injury, when inflammatory cells invaded, genes associated with cell‐matrix interactions and migration were up‐regulated. After day 5, as myoblast migration and differentiation started, genes for basement membrane constituents were found down‐regulated, whereas genes for ECM molecules, macrophage, myoblast adhesion, and migration receptors were up‐regulated. However, the profile and the induction time varied according to the experimental model, with only few genes being constantly up‐regulated. Gene up‐regulation was higher, delayed and more diverse following more severe trauma. Moreover, one of the most up‐regulated genes was periostin, suggestive for severe muscle damage and unfavourable architecture restoration.  相似文献   

14.
Cell binding to extracellular matrix (ECM) components changes cytoskeletal organization by the activation of Rho family GTPases. Tenascin-C, a developmentally regulated matrix protein, modulates cellular responses to other matrix proteins, such as fibronectin (FN). Here, we report that tenascin-C markedly altered cell phenotype on a three-dimensional fibrin matrix containing FN, resulting in suppression of actin stress fibers and induction of actin-rich filopodia. This distinct morphology was associated with complete suppression of the activation of RhoA, a small GTPase that induces actin stress fiber formation. Enforced activation of RhoA circumvented the effects of tenascin. Effects of active Rho were reversed by a Rho inhibitor C3 transferase. Suppression of GTPase activation allows tenascin-C expression to act as a regulatory switch to reverse the effects of adhesive proteins on Rho function. This represents a novel paradigm for the regulation of cytoskeletal organization by ECM.  相似文献   

15.
Mechanical forces are important regulators of connective tissue homeostasis. Our recent experiments in vivo indicate that externally applied mechanical load can lead to the rapid and sequential induction of distinct extracellular matrix (ECM) components in fibroblasts, rather than to a generalized hypertrophic response. Thus, ECM composition seems to be adapted specifically to changes in load. Mechanical stress can regulate the production of ECM proteins indirectly, by stimulating the release of a paracrine growth factor, or directly, by triggering an intracellular signalling pathway that activates the gene. We have evidence that tenascin-C is an ECM component directly regulated by mechanical stress: induction of its mRNA in stretched fibroblasts is rapid both in vivo and in vitro, does not depend on prior protein synthesis, and is not mediated by factors released into the medium. Fibroblasts sense force-induced deformations (strains) in their ECM. Findings by other researchers indicate that integrins within cell-matrix adhesions can act as 'strain gauges', triggering MAPK and NF-kappaB pathways in response to changes in mechanical stress. Our results indicate that cytoskeletal 'pre-stress' is important for mechanotransduction to work: relaxation of the cytoskeleton (e.g. by inhibiting Rho-dependent kinase) suppresses induction of the tenascin-C gene by cyclic stretch, and hence desensitizes the fibroblasts to mechanical signals. On the level of the ECM genes, we identified related enhancer sequences that respond to static stretch in both the tenascin-C and the collagen XII promoter. In the case of the tenascin-C gene, different promoter elements might be involved in induction by cyclic stretch. Thus, different mechanical signals seem to regulate distinct ECM genes in complex ways.  相似文献   

16.
This work combines expertise in stem cell biology and bioengineering to define the system for geometric control of proliferation and differentiation of myogenic progenitor cells. We have created an artificial niche of myogenic progenitor cells, namely, modified extracellular matrix (ECM) substrates with spatially embedded growth or differentiation factors (GF, DF) that predictably direct muscle cell fate in a geometric pattern. Embedded GF and DF signal progenitor cells from specifically defined areas on the ECM successfully competed against culture media for myogenic cell fate determination at a clearly defined boundary. Differentiation of myoblasts into myotubes is induced in growth-promoting medium, myotube formation is delayed in differentiation-promoting medium, and myogenic cells, at different stages of proliferation and differentiation, can be induced to coexist adjacently in identical culture media. This method can be used to identify molecular interactions between cells in different stages of myogenic differentiation, which are likely to be important determinants of tissue repair. The designed ECM niches can be further developed into a vehicle for transplantation of myogenic progenitor cells maintaining their regenerative potential. Additionally, this work may also serve as a general model to engineer synthetic cellular niches to harness the regenerative potential of organ stem cells.  相似文献   

17.
Adhesion modulatory proteins are important effectors of cell–matrix interactions during tissue remodeling and regeneration. They comprise a diverse group of matricellular proteins that confer antiadhesive properties to the extracellular matrix (ECM). We compared the inhibitory effects of two adhesion modulatory proteins, fibulin-1 and tenascin-C, both of which bind to the C-terminal heparin-binding (HepII) domain of fibronectin (FN) but are structurally distinct. Here, we report that, like tenascin-C, fibulin-1 inhibits fibroblast spreading and cell-mediated contraction of a fibrin–FN matrix. These proteins act by modulation of focal adhesion kinase and extracellular signal-regulated kinase signaling. The inhibitory effects were bypassed by lysophosphatidic acid, an activator of RhoA GTPase. Fibroblast response to fibulin-1, similar to tenascin-C, was dependent on expression of the heparan sulfate proteoglycan syndecan-4, which also binds to the HepII domain. Therefore, blockade of HepII-mediated signaling by competitive binding of fibulin-1 or tenascin-C represents a shared mechanism of adhesion modulation among disparate modulatory proteins.  相似文献   

18.
Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment.  相似文献   

19.
Summary To study the interaction of migrating newt epidermal cells with purified extracellular matrix (ECM) molecules we have developed an in vitro migration assay using pieces of newt skin explanted onto culture dishes coated with various ECM molecules and cultured for 18 h in defined serum-free medium. Newt epidermal cells migrate out from explants placed on dishes coated with either collagen, vitronectin, fibronectin, or fibrinogen but not on albumin-coated or uncoated dishes. Explant outgrowth on collagen was best in CEM 2000 medium diluted to 60% of mammalian osmolarity. Other media such as RPMI 1640 or Ex-Cell 300, diluted similarly, may also be used although in our hands CEM 2000 always allowed more migration. We found no migration on collagen when skin explants were incubated in Holtfreter's solution (an amphibian saline solution that we have previously shown allows reepithelialization on amputated newt limbs). Supplementation of Holtfreter's solution with glucose did not improve its ability to support migration. By testing various supplement combinations in conjunction with CEM 2000 and RPMI 1640 we found that neither serum, insulin, selenium, transferrin, norl-glutamine is required for explant outgrowth. Of the additives tested, outgrowth was stimulated only by insulin. Epidermal cell outgrowth on collagen was inhibited by both puromycin and cycloheximide, indicating the necessity for protein synthesis in this system. Whether the effects of these protein synthesis inhibitors are specifically on migration-related events or on general metabolic requirements is not clear. Inasmuch as there was no correlation (r=−0.227) between DNA synthesis (measured by incorporation of tritiated thymidine) and the amount of outgrowth, we believe that our assay is a measure of cell migration alone rather than a combination of mitosis and migration. This explant outgrowth system represents a new and relatively simple assay that can be used in the study of cell-substrate interactions during newt epidermal cell migration over extracellular matrix molecules in a defined serum-free environment. This work was supported by NIH grant AR27940 awarded to D. J. D.  相似文献   

20.
The replacement of damaged tissues and organs with tissue and organ transplants or bionic implants has serious drawbacks. There is now emerging a new approach to tissue and organ replacement, regenerative biology and medicine. Regenerative biology seeks to understand the cellular and molecular differences between regenerating and non-regenerating tissues. Regenerative medicine seeks to apply this understanding to restore tissue structure and function in damaged, non-regenerating tissues. Regeneration is accomplished by three mechanisms, each of which uses or produces a different kind of regeneration-competent cell. Compensatory hyperplasia is regeneration by the proliferation of cells which maintain all or most of their differentiated functions (e.g., liver). The urodele amphibians regenerate a variety of tissues by the dedifferentiation of mature cells to produce progenitor cells capable of division. Many tissues contain reserve stem or progenitor cells that are activated by injury to restore the tissue while simultaneously renewing themselves. All regeneration-competent cells have two features in common. First, they are not terminally differentiated and can re-enter the cell cycle in response to signals in the injury environment. Second, their activation is invariably accompanied by the dissolution of the extracellular matrix (ECM) surrounding the cells, suggesting that the ECM is an important regulator of their state of differentiation. Regenerative medicine uses three approaches. First is the transplantation of cells into the damaged area. Second is the construction of bioartificial tissues by seeding cells into a biodegradable scaffold where they produce a normal matrix. Third is the use of a biomaterial scaffold or drug delivery system to stimulate regeneration in vivo from regeneration-competent cells. There is substantial evidence that non-regenerating mammalian tissues harbor regeneration-competent cells that are forced into a pathway of scar tissue formation. Regeneration can be induced if the factors leading to scar formation are inhibited and the appropriate signaling environment is supplied. An overview of regenerative mechanisms, approaches of regenerative medicine, research directions, and research issues will be given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号