首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
In bacterial test systems, Co(II) has been shown to be antimutagenic in combination with several chemical and physical agents. To investigate whether such modulations also apply to mammalian cells, the effect of Co(II) on UV-induced mutagenesis, sister-chromatid exchanges as well as DNA damage and its removal was determined. Co(II) itself is weakly mutagenic at the HPRT locus and increases the frequency of sister-chromatid exchanges. Additionally, at both endpoints the metal ions enhance the genotoxicity of UV light. To discriminate between an enhancement of DNA damage and an interference with repair processes, the number of pyrimidine cyclobutane dimers was determined by HPLC. While the induction of these DNA lesions is not affected by Co(II), their removal is inhibited at concentrations of 75 microM Co(II) and higher. Analysis of the kinetics of strand-break induction and closure after UV irradiation by nucleoid sedimentation reveals an accumulation of strand breaks in the presence of Co(II). This indicates that either the polymerization or the ligation step in excision repair is affected. Since similar interactions with the processing of UV-induced DNA damage have been observed with other carcinogenic and/or mutagenic metal ions, this appears to be a common mechanism of metal genotoxicity.  相似文献   

2.
Defective or abortive repair of DNA lesions has been associated with carcinogenesis. Therefore it is imperative for a cell to accurately repair its DNA after damage if it is to return to a normal cellular phenotype. In certain circumstances, if DNA damage cannot be repaired completely and with high fidelity, it is more advantageous for an organism to have some of its more severely damaged cells die rather than survive as neoplastic transformants. A number of DNA repair inhibitors have the potential to act as anticarcinogenic compounds. These drugs are capable of modulating DNA repair, thus promoting cell death rather than repair of potentially carcinogenic DNA damage mediated by error-prone DNA repair processes. In theory, exposure to a DNA repair inhibitor during, or immediately after, carcinogenic exposure should decrease or prevent tumorigenesis. However, the ability of DNA repair inhibitors to prevent cancer development is difficult to interpret depending upon the system used and the type of genotoxic stress. Inhibitors may act on multiple aspects of DNA repair as well as the cellular signaling pathways activated in response to the initial damage. In this review, we summarize basic DNA repair mechanisms and explore the effects of a number of DNA repair inhibitors that not only potentiate DNA-damaging agents but also decrease carcinogenicity. In particular, we focus on a novel anti-tumor agent, β-lapachone, and its potential to block transformation by modulating poly(ADP-ribose) polymerase-1.  相似文献   

3.
Indirect mechanism of lead-induced genotoxicity in cultured mammalian cells   总被引:9,自引:1,他引:8  
The data concerning the mutagenic, clastogenic and carcinogenic properties of inorganic lead compounds have been conflicting. To investigate whether the genotoxicity of lead is due to indirect effects such as interference with DNA-repair processes, the induction of mutations, sister-chromatid exchanges and strand breaks by lead ions alone as well as in combination with UV light as a standard mutagen were determined. Lead acetate alone does not induce DNA-strand breaks in HeLa cells or mutations at the HPRT locus and sister-chromatid exchanges in V79 Chinese hamster cells. However, at all endpoints tested, lead ions interfere with the processing of UV-induced DNA damage. They inhibit the closing of DNA-strand breaks after UV irradiation and enhance the number of UV-induced mutations and sister-chromatid exchanges, indicating an inhibition of DNA repair. These data point out the necessity to consider such indirect effects when assessing the genotoxicity of metal compounds. As possible mechanisms of repair inhibition we suggest either the interaction with repair enzymes such as polymerase or ligase or else the interaction with calcium-regulated processes, for example with calmodulin.  相似文献   

4.
DNA damage by UV and UV-mimetic agents elicits a set of inter-related responses in mammalian cells, including DNA repair, DNA damage checkpoints, and apoptosis. Conventionally, these responses are analyzed separately using different methodologies. Here we describe a unified approach that is capable of quantifying all three responses in parallel using lysates from the same population of cells. We show that a highly sensitive in vivo excision repair assay is capable of detecting nucleotide excision repair of a wide spectrum of DNA lesions (UV damage, chemical carcinogens, and chemotherapeutic drugs) within minutes of damage induction. This method therefore allows for a real-time measure of nucleotide excision repair activity that can be monitored in conjunction with other components of the DNA damage response, including DNA damage checkpoint and apoptotic signaling. This approach therefore provides a convenient and reliable platform for simultaneously examining multiple aspects of the DNA damage response in a single population of cells that can be applied for a diverse array of carcinogenic and chemotherapeutic agents.  相似文献   

5.
We investigated DNA base damage in mammalian cells exposed to exogenous iron ions in culture. Murine hybridoma cells were treated with Fe(II) ions at concentrations of 10 μM, 100 μM, and 1 mM. Chromatin was isolated from treated and control cells and analyzed by gas chromatography/mass spectrometry for DNA base damage. Ten modified DNA bases were identified in both Fe(II)-treated and control cells. The quantification of modified bases was achieved by isotope-dilution mass spectrometry. In Fe(II)-treated cells, the amounts of modified bases were increased significantly above the background levels found in control cells. Dimethyl sulfoxide at concentrations up to 1 M in the culture medium did not significantly inhibit the formation of modified DNA bases. A mathematical simulation used to evaluate the plausibility of DNA damage upon Fe(II) treatment predicted a dose-dependent response, which agreed with the experimental results. In addition, Fe(II) treatment of cells increased the cell membrane permeability and caused production of lipid peroxides. The nature of DNA base lesions suggests the involvement of the hydroxyl radical in their formation. The failure of dimethyl sulfoxide to inhibit their formation indicates a site-specific mechanism for DNA damage with involvement of DNA-bound metal ions. Fe(II) treatment of cells may increase the intracellular iron ion concentration and/or cause oxidative stress releasing metal ions from their storage sites with subsequent binding to DNA. Identified DNA base lesions may be promutagenic and play a role in pathologic processes associated with iron ions.  相似文献   

6.
Hydroperoxide-induced DNA damage and mutations   总被引:8,自引:0,他引:8  
Termini J 《Mutation research》2000,450(1-2):107-124
Hydroperoxides (ROOH) are believed to play an important role in the generation of free radical damage in biology. Hydrogen peroxide (R=H) is produced by endogenous metabolic and catabolic processes in cells, while alkyl hydroperoxides (R=lipid, protein, DNA) are produced by free radical chain reactions involving molecular oxygen (autooxidation). The role of metal ions in generating DNA damage from hydroperoxides has long been recognized, and several distinct, biologically relevant mechanisms have been identified. Identification of the mechanistic pathways is important since it will largely determine the types of free radicals generated, which will largely determine the spectrum of DNA damage produced. Some mechanistic aspects of the reactions of low valent transition metal ions with ROOH and their role in mutagenesis are reviewed with a perspective on their possible role in the biological generation of DNA damage. A survey of hydroperoxide-induced mutagenesis studies is also presented. In vitro footprinting of DNA damage induced by hydroperoxides provides relevant information on sequence context dependent reactivity, and is valuable for the interpretation of mutation spectra since it represents the damage pattern prior to cellular repair. Efforts in this area are also reviewed.  相似文献   

7.
In combination with transition metals (Mn(II), Cu(II), and Fe(III)), isoniazid and related hydrazine compounds induced unscheduled DNA synthesis (DNA repair) in cultured human fibroblasts. Manganese at 10(-5) and 10(-4) M strongly enhanced DNA repair induced by isoniazid, iproniazid, nialamide and hydrazine. Peak levels of DNA repair occurred at 5 x 10(-4)--10(-3) M of the 4 hydrazine compounds. Copper caused less enhancement of DNA repair while iron had no detectable effect. Without added metal, unscheduled DNA synthesis was not observed in cells treated with any of the 4 freshly-prepared hydrazine compounds. However, following preincubation in medium for 6--12 h, isoniazid alone at high concentrations (10(-2) M--10(-1) M) induced DNA repair. With isoniazid/manganese mixtures, preincubation did not further enhance DNA repair except at low concentrations of isoniazid (2--5 x 10(-4) M). Catalase reduced the DNA damage caused by preincubated isoniazid and by the isoniazid/metal mixtures. Exposure of repair-deficient xeroderma pigmentosum cells to isoniazid plus manganese resulted in a DNA-repair profile similar to that of normal cells. The results are consistent with hydrogen peroxide being a critical intermediate for the production of free radicals which cause the observed DNA damage.  相似文献   

8.
Cadmium(II) is a toxic, mutagenic and carcinogenic metal (IARC Class 1 human carcinogen). It causes damage to eukaryotic cells both in acute and chronic modes of exposure via multiple biochemical mechanisms. In particular, Cd diminishes the capacity of cells to repair oxidative DNA damage. Oxidative DNA lesions are important precursors to mutations and ultimately may lead to neoplastic transformation of human cells. We investigated interactions of Cd with murine Ogg1 (mOgg1), an enzyme that removes 8-oxoguanine (8-oxoG), an abundant oxidative lesion, from DNA. Cd(2+) and Zn(2+), but not other divalent cations tested, suppressed mOgg1-catalyzed reactions. The apparent inhibition by Cd consisted of at least two independent processes: irreversible, DNA-independent first-order inactivation of mOgg1 and DNA-dependent inhibition. Irreversibly inactivated mOgg1 has nearly normal affinity for damaged DNA and a normal catalytic rate constant but is defective in formation of the covalent reaction intermediate. When both modes of inhibition are in effect, the catalytic rate constant is dramatically lowered, while affinity to damaged DNA is decreased moderately. Potential sites for Cd binding in mOgg1 and mOgg1-DNA complex are identified. Inactivation of Ogg1 may play a role in the mutagenic and carcinogenic action of Cd.  相似文献   

9.
In temperate lakes, asynchronous cycles in surface water temperatures and incident ultraviolet (UV) radiation expose aquatic organisms to damaging UV radiation at different temperatures. The enzyme systems that repair UV‐induced DNA damage are temperature dependent, and thus potentially less effective at repairing DNA damage at lower temperatures. This hypothesis was tested by examining the levels of UV‐induced DNA damage in the freshwater crustacean Daphnia pulicaria in the presence and absence of longer‐wavelength photoreactivating radiation (PRR) that induces photoenzymatic repair (PER) of DNA damage. By exposing both live and dead (freeze‐killed) Daphnia as well as raw DNA to UV‐B in the presence and absence of PRR, we were able to estimate the relative importance and temperature dependence of PER (light repair), nucleotide excision repair (NER, dark repair), and photoprotection (PP). Total DNA damage increased with increasing temperature. However, the even greater increase in DNA repair rates at higher temperatures led net DNA damage (total DNA damage minus repair) to be greater at lower temperatures. Photoprotection accounted for a much greater proportion of the reduction in DNA damage than did repair. Experiments that looked at survival rates following UV exposure demonstrated that PER increased survival rates. The important implication is that aquatic organisms that depend heavily on DNA repair processes may be less able to survive high UV exposure in low temperature environments. Photoprotection may be more effective under the low temperature, high UV conditions such as are found in early spring or at high elevations.  相似文献   

10.
Both endogenous processes and exogenous physical and chemical sources generate deoxyribonucleic acid (DNA) damage in the nucleus and organelles of living cells. To prevent deleterious effects, damage is balanced by repair pathways. DNA repair was first documented for the nuclear compartment but evidence was subsequently extended to the organelles. Mitochondria and chloroplasts possess their own repair processes. These share a number of factors with the nucleus but also rely on original mechanisms. Base excision repair remains the best characterized. Repair is organized with the other DNA metabolism pathways in the organelle membrane-associated nucleoids. DNA repair in mitochondria is a regulated, stress-responsive process. Organelle genomes do not encode DNA repair enzymes and translocation of nuclear-encoded repair proteins from the cytosol seems to be a major control mechanism. Finally, changes in the fidelity and efficiency of mitochondrial DNA repair are likely to be involved in DNA damage accumulation, disease and aging. The present review successively addresses these different issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号