首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of dietary selenium yeast, a source of organic selenium, on heat shock protein 70 (hsp70) responses, redox status, growth and feed utilization were evaluated either in enteropathogenic Escherichia coli-challenged (EPEC) or in heat-stressed (HS) male broiler chickens grown to 42 days of age. One day-old chicks in experiment 1 were challenged orally with EPEC (10(6) cfu/chicken on day 1 and boosted by water application on days 2, 3, and 4) and fed diets with or without selenium yeast. Body weight (BW), feed conversion ratio (FCR), and total mortality were determined at 42 days of age, and this was followed by collection of ileal tissue for the quantification of total glutathione (TGSH), reduced glutathione (GSH), oxidized glutathione (GSSG), and hsp70 in randomly selected chickens from each treatment. In experiment 2, male broiler chickens were fed diets with or without selenium yeast under a thermoneutral rearing condition. At four weeks of age, blood and hepatic tissue were collected from chickens maintained in the thermoneutral environment and from chickens subjected to HS (40 degrees C for 1 h) and analyzed for TGSH, GSH, GSSG, and hsp70. Selenium yeast improved BW, FCR, and decreased mortality in both control and EPEC-challenged chicks. Selenium yeast significantly attenuated hsp70 expression in EPEC-challenged chickens and in those subjected to HS. The EPEC challenge increased TGSH and GSSG levels and decreased GSH/GSSG ratio. However, GSSG level accumulated in chickens fed diets without selenium supplementation resulting in a lower GSH/GSSG ratio in the selenium yeast-fed group. Heat stress increased GSSG level and decreased GSH/GSSG ratio. Selenium yeast-fed groups maintained higher levels of GSSG before and after HS with a resultant lower GSH/GSSG ratio. The hsp70 response was significantly less in those chickens fed selenium yeast and challenged with either EPEC or HS than in those chickens given no supplemental selenium. The results of this study suggest that selenium yeast supplementation had imparted resistance to oxidative stress associated with enteric bacteria infection and to high temperature exposure. It is believed that the resistance to the stressors was due to an improved redox status of the selenium yeast-fed chickens.  相似文献   

2.
Heat shock protein 70 (hsp70) family of proteins, which functions as molecular chaperones, has been associated with tolerance to stressors in avian species. Selenium (Se) is an essential trace mineral incorporated into the seleno-enzymes such as glutathione peroxidase (GSHpx). GSHpx reduces oxidized glutathione (GSSG) to reduced glutathione (GSH) in the GSH/GSSG antioxidant system and protects cells from oxidative damage. This study was conducted to examine if the relationship between dietary supplementation of selenium to turkey (Meleagris gallopavo) hens and the embryonic expression of hsp70 and GSHpx activity in heat stressed embryos. Livers of embryos developing in eggs from turkey hens fed diets with or without supplemental Se were analyzed for hsp70 concentration and GSHpx activity before and after recovery from a heating episode. Before heat stress, hsp70 concentrations were equivalent in each treatment, but GSHpx activity was maximized in the SE treatment group. After recovery from the heating episode, hsp70 concentrations were significantly higher (P<0.05) in the non-Se-supplemented groups, but in the Se-supplemented groups the hsp70 concentrations were not different from pre-stress concentrations. In the pre-stress Se-supplemented group, liver GSHpx activity was significantly higher than GSHpx activity in the non-Se-supplemented embryo livers, and in the livers from embryos recovering from heat stress, GSHpx activity in the non-Se-supplemented group was lower than the pre-stress activity and significantly lower than the GSHpx activity in liver from Se-supplemented embryos recovering from heat distress. Se supplementation to the dams resulted in a significant increase in their embryos and that condition would facilitate a decreased incidence of oxidative damage to cells. A more reduced redox status in embryos from Se-supplemented dams decreased the need for cellular protection attributed to stress induced hsp70 and presumably allows heat distressed embryos to resume normal growth and development than embryos from dams with inadequate selenium nutrition.  相似文献   

3.
The main purpose of this study was to prepare selenium/glutathione-enriched Candida utilis and investigate its effect on growth performance, antioxidant capacity, and immune response in rats. The preparation of the selenium/glutathione-enriched yeast was conducted using fed-batch culture for high cell density. The optimal culture conditions for increased intracellular organic selenium and glutathione contents were as follows: the concentrated medium was fed beginning at 12?h using a polynomial feeding strategy until a total glucose concentration of 150?g/l was reached, and sodium selenite was continuously added together with glucose to a total concentration of 60?mg/l. As a result, 81?% of sodium selenite was assimilated and transformed into organic selenium by C. utilis under optimal conditions, which in turn resulted in greater glutathione accumulation and lower malondialdehyde cellular content in the yeast. To investigate and compare the effects of the prepared selenized C. utilis and other dietary supplements, 40 female rats were divided into five groups of eight rats each, following a randomized block design. Experimental feeding was conducted for a period of 6?weeks. Selenium supplementation with inorganic selenium (sodium selenite) and organic selenium (selenized C. utilis) showed better results than the control and other groups supplemented with yeast with or without glutathione. The body mass of rats, selenium deposition, and oxidative enzymes activities in both serum and liver samples, and immunity responses were all significantly improved by selenium supplementation, and between the two sources, organic selenium was more effective than inorganic selenium.  相似文献   

4.
The efficiency of antioxidant defenses and relationship with body burden of metal and organic contaminants has not been previously investigated in arctic seabirds, neither in chicks nor in adults. The objective of this study was to compare such defenses in chicks from three species, Black-legged kittiwake (Rissa tridactyla), Northern fulmar (Fulmarus glacialis), and Herring gull (Larus argentatus), and the relationship with tissue concentrations of essential metals such as selenium and iron and halogenated organic compounds, represented by polychlorinated biphenyl (PCB). The results showed significant species-specific differences in the antioxidant responses which also corresponded with metal and PCB levels in different ways. The capability to neutralize hydroxyl radicals (TOSC-HO?) and the activities of catalase and Se-dependent glutathione peroxidases (GPX) clearly increased in species with the higher levels of metals and PCBs, while the opposite trend was observed for Se-independent GPX, TOSC against peroxyl radicals (ROO?) and peroxynitrite (ONOOH). Less clear relationships were obtained for glutathione levels, GSH/GSSG ratio, glutathione reductase and superoxide dismutase. The results showed differences in antioxidant efficiency between the species, and some of these defenses exhibited dose-response-like relationships with measured levels of selenium, iron and ΣPCBs. PCBs, selenium and iron levels were positively related to the responses of antioxidants with potential to reduce HO?/H?O? (Se-dependent GPX, CAT and TOSC against HO?). However, direct causal relationships between antioxidant responses and contaminant concentrations could not be shown on individual level. Varying levels of metals and contaminants due to different diet and age were probably the main explanations for the species differences in antioxidant defense.  相似文献   

5.
The activity of selenium-dependent glutathione peroxidase (GPX), liver concentration of vitamin E, and plasma and liver selenium levels were used for estimation of the antioxidant status of broiler chickens infected with Ascaridia galli. These biomarkers were recorded in an experiment covering 70 days p.i. At the same time the establishment rate of A. galli in chicken intestines, gain in the host body weight and chicken survival were studied. Broiler chickens (Cobb hybrids) were infected with 1450 embryonated A. galli eggs and treated with Sel-plex. A mathematical model was applied to determine the rate of nematode reduction and the relative rate of gain of host body weight, which are essential kinetic parameters of parasite-host interaction. The activity of GPX increased with both elevated selenium and reduced infection levels. The concentrations of selenium and vitamin E, and the GPX activity in the infected chickens demonstrated a similar pattern of change with time after day 30 p.i. The supplementation of the broilers with dietary selenium in the form of Sel-plex improved their antioxidant status. Increases by 29% in vitamin E concentration, 15% in GPX activity, and 22% in liver selenium concentration, respectively, were recorded in the infected and treated, compared to infected and untreated broilers.  相似文献   

6.
Selenium is an essential element required for activity of several antioxidant enzymes, including glutathione peroxidase. Because of the critical role of the antioxidant system in responding to traumatic events, we hypothesized that dietary selenium supplementation would enhance neuroprotection in a rodent model of spinal cord injury. Rats were maintained on either a control or selenium-enriched diet prior to, and following, injury. Dietary selenium supplementation, provided as selenized yeast added to normal rat chow, resulted in a doubling of selenium levels in the spinal cord. Dietary selenium reduced the time required for recovery of bladder function following thoracic spinal cord injury. However, this was not accompanied by improvement in locomotor function or tissue sparing.  相似文献   

7.
We investigated the protective role of selenium (Se) in minimizing high temperature-induced damages to rapeseed (Brassica napus L. cv. BINA Sarisha 3) seedlings. Ten-day-old seedlings which had been supplemented with Se (25 μM Na2SeO4) or not were grown separately under control temperature (25 °C) or high temperature (38 °C) for a period of 24 or 48 h in nutrient solution. Heat stress caused decrease in chlorophyll and leaf relative water content (RWC) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), proline (Pro), and methylglyoxal (MG) contents. Ascorbate (AsA) content decreased at any duration of heat treatment. The content of reduced glutathione (GSH) increased only at 24 h of stress, while glutathione disulfide (GSSG) markedly increased at both duration of heat exposure with associated decrease in GSH/GSSG ratio. Upon heat treatment the activities of ascorbate peroxidase (APX), glutathione S-transferase (GST) and glyoxalase I (Gly I) were increased, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and catalase (CAT) were decreased. The activities of glutathione reductase (GR) and glutathione peroxidase (GPX) remained unchanged under heat stress. However, heat-treated seedlings which were supplemented with Se significantly decreased the lipid peroxidation, H2O2, and MG content and enhanced the content of chlorophyll, Pro, RWC, AsA, and GSH as well as the GSH/GSSG ratio. Selenium supplemented heat-treated seedlings also showed enhanced activities of MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II as compared to heat-treated seedlings without Se supplementation. This study concludes that exogenous Se application confers heat stress tolerance in rapeseed seedlings by upregulating the antioxidant defense mechanism and methylglyoxal detoxification system.  相似文献   

8.
The metabolic relationships among the antioxidant nutrients selenium, sulfur, and vitamin E are particularly close. Selenium and vitamin E have long been known to spare one another in certain nutritional diseases of animals, and selenium has been considered to have a key antioxidant defense function as a component of glutathione peroxidase. However, the antioxidant role of glutathione peroxidase has been questioned and new proteins containing selenium have been identified: phospholipid hydroperoxide glutathione peroxidase, selenoprotein P, and iodothyronine deiodinase. Glutathione peroxidase activity independent of selenium resides in the glutathione S-transferases. Glutathione participates in both enzymatic and nonenzymatic antioxidant defense systems. Some low-molecular weight selenium compounds (e.g., ebselen) exhibit glutathione peroxidase-like action. Certain low molecular weight thiols decompose peroxides nonenzymatically (e.g., the ovothiols). Murine malaria appears to be a useful experimental model for investigating interrelationships of selenium and vitamin E. Vitamin E deficiency protects against the parasite, especially when the mice are concurrently fed peroxidizable fat such as fish or linseed oils. Selenium deficiency, on the other hand, has little or no protective effect against the parasite. Any practical utility of pro-oxidant diets in combating human malaria remains to be determined.  相似文献   

9.
Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds, and may increase the risk of human exposure to this chemical at the workplace. In a previous study, we demonstrated the pro-oxidant action and the mutagenic properties of this compound on bacteria and yeast. In the present study, we evaluated the putative cytotoxic, pro-oxidant, genotoxic, and mutagenic properties of this molecule in V79 Chinese lung fibroblast cells. When cells were treated with increasing concentrations of DPDS, its cytotoxic activity, as determined using four cell viability endpoints, occurs in doses up to 50 microM. The MTT reduction was stimulated, which may indicate reactive oxygen species (ROS) generation. Accordingly, the treatment of cells for 3h with cytotoxic doses of DPDS increased TBARS levels, and sensitized cells to oxidative challenge, indicating a pro-oxidant effect. The measurement of total, reduced, and oxidized glutathione showed that DPDS can lead to lower intracellular glutathione depletion, with no increase in the oxidation rate in a dose- and time-dependent manner. At the higher doses, DPDS generates DNA strand breaks, as observed using the comet assay. The treatment also induced an increase in the number of binucleated cells in the micronucleus test, showing mutagenic risk by this molecule at high concentrations. Finally, pre-incubation with N-acetylcysteine, which restored GSH to normal levels, annulled DPDS pro-oxidant and genotoxic effects. These findings show that DPDS-induced oxidative stress and toxicity are closely related to intracellular level of reduced glutathione. Moreover, at lower doses, this molecule has antioxidant properties, protecting the cell against oxidative damage induced by hydrogen peroxide.  相似文献   

10.
The effect of selenium supplementation on the rumen protozoan population of sheep was demonstrated. Both the total and generic counts of rumen ciliates in sheep fed a diet with basal Se content (70 microg/kg dry matter) were compared to those of animals given feed supplemented with inorganic (disodium selenite) or organic Se (selenized yeast) (310 microg/kg dry matter). The genera of Entodinium, Isotricha, Dasytricha, Ophryoscolex, Diploplastron and Polyplastron occurred in all sheep except for the control, in which Ophryoscolex was not observed. The population of Ophryoscolex caudatus f. tricoronatus was significantly higher in sheep supplemented with organic Se than in animals given inorganic Se (by 160 %). Supplementation of feed with selenized yeast induced significant growth in the Diploplastron population (by 63 %) while no change occurred in sheep given selenite. The populations of Dasytricha ruminantium and Polyplastron multivesiculatum were higher than control in both Se-supplemented groups. The ciliate population of Entodinium spp. was not influenced by Se supplements. Our results suggest a protective effect of Se feed supplementation on the development of some rumen ciliate species in young ruminants.  相似文献   

11.
The present study investigates the regulatory role of exogenous selenium (Se) in the antioxidant defense and methylglyoxal (MG) detoxification systems in rapeseed seedlings exposed to salt stress. Twelve-day-old seedlings, grown in Petri dishes, were supplemented with selenium (25 μM Na2SeO4) and salt (100 and 200 mM NaCl) separately and in combination, and further grown for 48 h. The ascorbate (AsA) content of the seedlings decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) increased with an increase in the level of salt stress, while the GSH/GSSG ratio decreased. In addition, the ascorbate peroxidase (APX) and glutathione S-transferase (GST) activity increased significantly with increased salt concentration (both at 100 and 200 mM NaCl), while glutathione peroxidase (GPX) activity increased only at moderate salt stress (100 mM NaCl). Glutathione reductase (GR) activity remained unchanged at 100 mM NaCl, while it was decreased under severe (200 mM NaCl) salt stress. Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, whereas a sharp decrease of these activities was observed under severe salt stress (200 mM NaCl). Concomitant increases in the levels of H2O2 and lipid peroxidation (MDA) were also measured. Exogenous Se treatment alone had little effect on the non-enzymatic and enzymatic components. However, further investigation revealed that Se treatment had a synergistic effect: in salt-stressed seedlings, it increased the AsA and GSH contents; GSH/GSSG ratio; and the activities of APX, MDHAR, DHAR, GR, GST, GPX, CAT, Gly I, and Gly II. As a result, addition of Se in salt-stressed seedlings led to a reduction in the levels of H2O2 and MDA as compared to salt stress alone. These results suggest that the exogenous application of Se rendered the plants more tolerant to salt stress-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

12.
The experiment was conducted to compare the effect of different selenium sources on the expression of glutathione peroxidase 1 (GPx1) and iodothyronine deiodinase 1 (Dio1) mRNA in mice by quantitative real-time PCR. A total of 60 male Kunming mice at average body weight of 20 g were allotted to three groups in a randomized complete block design, namely two treatments and one control. Mice in Group 1 were fed a basal diet as control, while mice in Groups 2 and 3 were fed the basal diet supplemented with 0.1 mg/kg selenium as sodium selenite or selenized yeast, respectively. Whole feeding experiment lasted for 30 d. At the end of the feeding trial, liver mRNA levels of GPx1 and Dio1 were determined by quantitative real-time PCR, as well as growth performance, body composition, blood and GPx activity were determined. The results showed that no significant differences in overall growth performance and body composition, including body weight, body length, heart weight, kidney weight and liver weight, were found between the experimental groups (P>0.05). Blood GPx activity increased in all of the selenium supplemented groups compared with control group (P<0.01). However, blood GPx activity in selenized yeast group was higher than that in sodium selenite group (P<0.05). Liver mRNA levels of GPx1 and Dio1 also increased in the two selenium supplemented groups compared with the control group (P<0.05), while there was no significant difference between the sodium selenite and selenized yeast groups (P>0.05). In conclusion, selenium increased the mRNA expression of GPx1 and Dio1 genes in murine liver, and there was no significant difference between the organic or inorganic form of selenium used.  相似文献   

13.
Selenium-enriched Candida utilis has attracted much attention due to its expanding application in food and feed additives. The objective of this study was to efficiently prepare selenium-enriched C. utilis and to investigate the effects of the prepared yeast on antioxidant capacity in rats. A batch culture of selenium-enriched C. utilis was first carried out, and the addition of sodium selenite (Na2SeO3) after all glucose had been consumed was found to favor higher intracellular glutathione and organic selenium content. Moreover, l-methionine boosted yeast cell growth and glutathione biosynthesis, and prevented glutathione from leaking to the extracellular space that can be caused by Na2SeO3. We therefore developed a two-stage culture strategy involving supplementation with l-methionine and Na2SeO3 at separate culture phases to improve the performance of selenized C. utilis. Using this two-stage culture strategy, intracellular glutathione content reached 18.6 mg/g and 15.5 mg/g, respectively, in batch and fed-batch systems, and organic selenium content reached 905.2 μg/g and 984.7 μg/g, respectively. The effects of selenium-enriched C. utilis on the activities of antioxidant related enzymes in rats were investigated, and the prepared selenium-enriched C. utilis was shown to be an optimal dietary supplement for enhancing antioxidant capacity in rats.  相似文献   

14.
The potential benefits to health of the supply of antioxidants, either through dietary intake or as supplements, is equivocal. There is a need to develop biomarkers that may act as monitors of cellular defense as influenced by antioxidant status. Thirty-two individuals participated in the project and 19 received supplements for 5 weeks in the form of a capsule containing a defined mixture of antioxidants. No change was noted in levels of superoxide dismutase and glutathione peroxidase following antioxidant supplementation. On the other hand, increase in total antioxidant status and decrease in malondialdehyde, protein carbonyl formation, and erythrocyte hemolysis were noted. In lymphocytes isolated from individuals receiving antioxidant supplements and subjected to a heat shock in the presence of the free radical generator 2, 2'-azobis-(2-amidinopropane)-dihydrochloride, enhanced synthesis of heat shock proteins hsp 105, hsp 90, hsp 70, and hsp 40 by contrast with decreased synthesis of heme oxygenase HO-1 (hsp 32) were noted. We conclude that antioxidant status modulates the synthesis of stress proteins.  相似文献   

15.
Heat shock proteins, in particular hsp70, are induced under conditions of cellular stress. It has been reported that environmental stimuli such as hyperthermia, oxidative stress, and exposure to magnetic fields increase levels of hsp70. It has also been reported that hyperthermia in combination with magnetic field exposure results in a synergistic increase in hsp70 production. We tested the hypothesis that oxidative stress induced by glutathione (GSH) depletion in combination with static magnetic field (SMF) exposure will produce a similar synergistic increase in hsp70 production. We exposed cells to heat, SMF, and diethylmaleate (DEM), which depletes GSH levels alone and in combination with each other, and measured hsp70 production using an hsp70/luciferase reporter and mRNA levels using PCR. We found that treatment with DEM significantly reduced the rate of luciferase bioluminescence production, particularly in the presence of heat. There was no significant effect of a 100-mT SMF exposure either alone or in combination with heat, DEM, or both on bioluminescence, however there was a significant interaction between SMF and DEM on hsp70 mRNA levels. Therefore, under our exposure conditions, GSH depletion reduced hsp70 levels but a synergistic effect of combining this stress with other external stimuli was only observed at the level of mRNA.  相似文献   

16.
Studies were initiated to determine the extent to which reduced glutathione (GSH) may be involved in the capacity of cultured rat embryos to develop heat-induced tolerance to the deleterious effects of exposure to high temperatures (heat shock). Investigations of the modulation of dysmorphogenic responses of embryos to heat shock (43 degrees C, 30 min) as well as to the expression of the hsp70 gene and subsequent formation of hsps indicated that the acquisition of thermotolerance by rat embryos could be significantly influenced by the inhibition of GSH synthesis. Treatment of conceptuses with L-buthionine-S,R-sulfoximine (BSO) reduced intracellular GSH concentrations and compromised the capacity of embryos to mount a thermotolerance response as assessed by alterations in indices of growth and development. Embryonic thermotolerance elicited by preexposure to 42 degrees C for 30 min was accompanied by increases in GSH to levels greater than those measured in control embryos at 37 degrees C just prior to the subsequent 43 degrees C heat exposure. Expression of hsp70 mRNA was detectable soon after elevation of the temperature to 42 degrees C and reached its highest level of accumulation 1.5 hr after the 43 degrees C heat shock. BSO treatment had little if any effect on hsp70 message levels or on the synthesis of hsp70. The fact that BSO-treatment attenuated the thermotolerance response but did not produce a decrease in hsp70 RNA or the synthesis of hsp70 suggests that hsp70 alone is not sufficient to confer thermotolerance upon cultured rat embryos.  相似文献   

17.
The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the H2O2 and lipid peroxidation levels. Exogenous NO pre-treatment of the seedlings had little influence on the non-enzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

18.
In order to observe the possible regulatory role of selenium (Se) in relation to the changes in ascorbate (AsA) glutathione (GSH) levels and to the activities of antioxidant and glyoxalase pathway enzymes, rapeseed (Brassica napus) seedlings were grown in Petri dishes. A set of 10-day-old seedlings was pretreated with 25 μM Se (Sodium selenate) for 48 h. Two levels of drought stress (10% and 20% PEG) were imposed separately as well as on Se-pretreated seedlings, which were grown for another 48 h. Drought stress, at any level, caused a significant increase in GSH and glutathione disulfide (GSSG) content; however, the AsA content increased only under mild stress. The activity of ascorbate peroxidase (APX) was not affected by drought stress. The monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) activity increased only under mild stress (10% PEG). The activity of dehydroascorbate reductase (DHAR), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activity significantly increased under any level of drought stress, while catalase (CAT) and glyoxalase II (Gly II) activity decreased. A sharp increase in hydrogen peroxide (H2O2) and lipid peroxidation (MDA content) was induced by drought stress. On the other hand, Se-pretreated seedlings exposed to drought stress showed a rise in AsA and GSH content, maintained a high GSH/GSSG ratio, and evidenced increased activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I, and Gly II as compared with the drought-stressed plants without Se. These seedlings showed a concomitant decrease in GSSG content, H2O2, and the level of lipid peroxidation. The results indicate that the exogenous application of Se increased the tolerance of the plants to drought-induced oxidative damage by enhancing their antioxidant defense and methylglyoxal detoxification systems.  相似文献   

19.
Hydrogen sulfide (H2S) is a signal molecule that is involved in plant growth, development and the acquisition of stress tolerance including heat tolerance, but the mechanism of H2S-induced heat tolerance is not completely clear. In present study, the effect of sodium hydrosulfide (NaHS), a H2S donor, treatment on heat tolerance of maize seedlings in relation to antioxidant system was investigated. The results showed that NaHS treatment improved survival percentage of maize seedlings under heat stress in a concentration-dependent manner, indicating that H2S treatment could improve heat tolerance of maize seedlings. To further study mechanism of NaHS-induced heat tolerance, catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) activities, and glutathione (GSH) and ascorbic acid (AsA) contents in maize seedlings were determined. The results showed that NaHS treatment increased the activities of CAT, GPX, SOD and GR, and GSH and AsA contents as well as the ratio of reduced antioxidants to total antioxidants [AsA/(AsA+DHA) and GSH/(GSH +GSSG)] in maize seedlings under normal culture conditions compared with the control. Under heat stress, antioxidant enzymes activities, antioxidants contents and the ratio of the reduced antioxidants to total antioxidants in control and treated seedlings all decreased, but NaHS-treated seedlings maintained higher antioxidant enzymes activities and antioxidants levels as well as the ratio of reduced antioxidants to total antioxidants. All of above-mentioned results suggested that NaHS treatment could improve heat tolerance of maize seedlings, and the acquisition of this heat tolerance may be relation to enhanced antioxidant system activity.  相似文献   

20.
Oxidative damage involved in the pathogenesis of many diseases, such as cardiovascular disease, cancer and diabetics. The antioxidant defense system plays an important role in protecting body from oxidative damage. Numerous studies have been shown that a single vitamin or mineral supplementation has the beneficial effect on the antioxidant defense system. However, the overall combined effect of multinutrient supplementation on antioxidant defense system remains to be clarified. In the present double blind, placebo-controlled study, the antioxidative defense system was measured in 34 healthy subjects before and after multinutrient supplementation. Plasma vitamin C, E and β-carotene, erythrocyte vitamin E, as well as whole blood selenium all showed increase at 5 weeks of supplementation. The activities of catalase (CAT) and glutathione peroxidase (GPX), but not superoxide dismutase (SOD), as well as GSH level were significantly increased at 16 weeks of supplementation. Moreover, the resistance of erythrocytes to 2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidation was elevated at 5 weeks after supplementation. These results clearly demonstrated that short-term supplementation (16 weeks) with multinutrient could markedly improve antioxidative vitamin status and enzymatic activities. These improvements also led to the reduction of RBC susceptibility to free radial peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号