首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为给贵州本地绵羊选种选育提供更好的科学依据,本试验利用威宁绵羊和贵州半细毛羊构建DNA池,设计4对引物扩增其STAT5b基因部分外显子及内含子序列。PCR产物经纯化后进行双向测序。利用DNAStar和BLAST分析确定多态性位点。利用生物信息学软件分析SNPs位点对STAT5b基因RNA二级结构、STAT5b蛋白二级及三级结构的影响。结果表明,在扩增的STAT5b基因中筛选到6个SNPs:exon5-G12A、exon8-G56A、exon8-C104T、intron2-A3164C、intron4-C1026T和intron5-T3323C,其中exon8-G56A为错义突变,导致编码的谷氨酸(Glu)变为赖氨酸(Lys);exon5-G12A和exon8-C104T多态位点均未改变氨基酸的编码,为同义突变;intron2-A3164C、intron4-C1026T和intron5-T3323C均在内含子区,不参与氨基酸编码。  相似文献   

2.
本文研究兔的UCP2基因的多态性,为地方兔种的选种和选育提供一定的依据。分别以比利时兔、加利福尼亚兔和新西兰兔构建其DNA池,设计6对引物扩增3个兔种UCP2基因的外显子序列和部分内含子序列,用PCR产物直接进行双向测序快速的筛选出兔的UCP2的多态位点。结果表明:在兔UCP2基因中筛选到8个多态性位点:intron2-G2217T、exon3-A63C、exon3-G169A、intron5-C61A、exon6-C11G、intron6-C7T、intron6-C46T、intron6-C73A,其中exon3-A63C和exon3-G169A位于第3外显子上,且exon3-A63C为错义突变,导致编码的酪氨酸(Tyr)变为丝氨酸(Ser)。exon6-C11G在第6外显子上,其余的多态位点都在内含子中,除了intron6-C7T外,其余的多态位点在三种兔种中都有。结论:通过生物信息学对兔UCP2基因的分析发现m RNA二级结构、二级结构和蛋白质的三级结构在突变前后都发生变化。  相似文献   

3.
扬子鳄MHCⅡ类B基因第二外元的克隆及序列分析   总被引:4,自引:0,他引:4  
3头扬子鳄血样取自宣城安徽省扬子鳄繁殖研究中心。利用一对简并引物对MHCⅡ类B基因第二外元的部分片段进行扩增;通过克隆、单链构象多态性分析、测序,并将测得序列与下载的8个物种MHC序列比对,确定序列差异和变异位点;利用MEGA软件构建NJ树,PAUP4.0构建MP树。结果得到10种不同的序列,片段长166bp。核苷酸序列中有38个变异位点,氨基酸序列中有23个变异位点;推定的抗原结合位点非同义替换(dN)明显高于同义替换(dS)。10种序列的NJ树和MP树极为相似,均为A、B两个分支,两个分支明显的特异性位点核苷酸序列中有9个。氨基酸序列中有7个。表明扬子鳄MHCⅡ类B基因第二外元有较高的多态性,有利于扬子鳄饲养种群的遗传保护。  相似文献   

4.
利用一对兼并性引物扩增了乌龟MHCⅡ类分子B基因第二外显子的部分片段,并对PCR产物进行了克隆和测序,结果得到8种长度为166 bp的不同序列。经分析,序列中有84个变异位点,核苷酸的非同义替换(dN)多于同义替换(dS),造成39个位点氨基酸的改变。氨基酸的替换趋于集中在假定的抗原结合位点附近。利用MEGA、PAUP软件分别构建NJ树和MP树,两种树极为相似,均分为两支。同一个体中出现有多种序列,提示乌龟MHCⅡ类分子B基因可能存在着座位重复。研究表明:乌龟MHCⅡ类分子B基因第二外显子有较高的多态性,有利于乌龟野生种群的遗传保护。  相似文献   

5.
MHC-DRA基因仅在少部分物种如马、斑马、驴等具有多态性,DRA基因在其他哺乳动物中多为低多态性。由于MHC-DRA的低多态性,较少受到研究者重视,我们选取近缘物种牛的DRA基因引物,对四川养麝研究所的217只林麝进行DRA基因exon 2的序列扩增,得到2个林麝DRA基因,片段长度为260 bp,这2个基因仅有一个核苷酸同义突变,没有氨基酸突变。我们将所获得的林麝DRA基因与反刍亚目其他物种DRA基因进行氨基酸比对发现,我们扩增的序列为林麝DRA基因exon 2,编码MHCⅡ类分子的α1区域,而这段区域主要参与形成MHCⅡ类分子的多肽结合槽,根据Brown确定人类的抗原肽结合区位点,在参与比对的反刍亚目物种DRA基因中,抗原位点11、22、72、76存在氨基酸变异,而在这些位点上林麝的DRA基因没有变异,和大部分反刍亚目相同。同时我们发现大部分反刍亚目物种之间氨基酸突变的位点大都在非抗原结合位点。  相似文献   

6.
为研究鸡MHC B-LBⅡ基因的遗传多态性,首先在8个中国地方鸡种(藏鸡、仙居鸡、北京油鸡、固始鸡、斗鸡、丝羽乌骨鸡、白耳鸡和狼山鸡)B-LBⅡ基因第二外显子扩增了一长度为 175 bp 的 DNA 片段并进行 SSCP 基因型分析;在8 个地方鸡种共 467 个个体中检测到 37 个 PCR-SSCP 基因型;从被检样品中筛选出不同基因型的个体,并在其 B-LBⅡ基因组中扩增了一个包括其第二外显子和第二内含子在内长度为374 bp的片段,通过克隆和测序获得了该片段的核苷酸序列。经序列分析,在前述地方鸡种被筛选出的 30 个无血缘关系的个体中发现了 31 个 B-LBⅡ新等位基因,并参照哺乳动物 MHC II 类 B 等位基因命名规则进行了命名。对这 31 个 B-LBⅡ新等位基因长度为 374 bp 的 DNA 片段进行比对表明,在其第二外显子序列上共有 68 个多态性变异位点,其中简约性信息位点 51 个,单变异位点 17 个,具有丰富的遗传多态性。在这些多态性变异位点中,出现在遗传密码子第一和第二位上的碱基替换率分别为 36.76% 和 35.29%。等位基因序列间的相似性估测为 90.6%-99.5%;B-LBⅡ基因第二外显子的错义替换率和同义替换率分别为 14.64±2.67%和 2.92±0.94%。结果表明,B-LBⅡ基因的丰富遗传多态性主要是由基因重组和平衡选择效应所引起的。对 B-LBⅡ等位基因第二外显子所编码的 B-LBⅡ分子β1 结构域氨基酸序列比对发现,31 个 B-LBⅡ新等位基因属于 26 个等位基因主型;在β1结构域氨基酸序列的 33个变异位点上,存在 6 个同义替换和 27 个错义替换。分析认为,那些发生在多肽结合位点上的氨基酸错义替换与鸡 MHC B-LBⅡ分子的免疫特异性有关。该结果可为鸡的抗病育种研究提供分子生物学依据。  相似文献   

7.
李佳薏  姚永芳  周亮  徐怀亮 《遗传》2012,(11):1433-1442
主要组织相容性复合体(Major histocompatibility complex,MHC)对许多疾病的易感性和抵抗力起着重要的作用。为了解藏酋猴(Macaca thibetana)的MHC基因遗传背景,以促进藏酋猴遗传资源的保护及其在生物医学研究中的应用,文章采用PCR扩增和克隆测序等方法对来自四川地区的70个藏酋猴样品的Mhc-DPB1基因exon 2进行了检测和分析。首次在藏酋猴中获得了18个DPB1等位基因(Math-DPB1),其中1个为假基因(Math-DPB1*01:06N)。18个等位基因中,Math-DPB1*06:01:01(67.14%)的阳性检出率最高,其次为Math-DPB1*01:03:01(37.14%)、Math-DPB1*09:02(25.71%)和Math-DPB1*22:01(15.71%)。氨基酸序列比对发现,藏酋猴Math-DPB1等位基因编码的氨基酸序列中,有5个氨基酸残基变异位点表现出物种特异性。不同物种来源的DPB1等位基因系统发生树表明,藏酋猴、猕猴(Macaca mulatta)和食蟹猴(Macaca fascicularis)的DPB1等位基因不是以物种特异性方式聚类,而是种间混聚在一起,并显示出明显的跨物种多态性(Trans-species polymorphism)。选择性检验表明,平衡选择(Balancing selection)在维持Math-DPB1基因的多态性中起着重要的作用。  相似文献   

8.
为探究LEPR基因多态性的遗传特性,本研究以贵州白山羊为试验材料,运用DNA池结合直接测序方法进行LEPR基因的SNPs位点的筛选,继而对LEPR基因RNA的二级结构以及其所编码蛋白质的二级结构和三级结构进行生物信息分析。结果表明,在试验群体LEPR基因中共发现4个SNPs,分别为exon4-G246A(Asp-Asn)、exon8-C39T(同义突变)、intron8-G59A(内含子突变)和exon18-C94T(Ser-Leu)。经生物信息学软件分析表明,exon4-G246A(Asp-Asn)和exon18-C94T(Ser-Leu)位点突变前后的等位基因频率、LEPR m RNA的二级结构、LEPR蛋白质二级结构和三级结构均有改变。  相似文献   

9.
本文基于135头野猪样本中检测到的15种SLA DRB基因exon 2序列的遗传变异分析,探讨DRB基因在不同地理区域中自然选择的变化特征.研究发现DRB基因exon 2抗原结合位点的非同义替换率为同义替换率的2.95倍,表明该位点受到平衡选择的强烈作用.在系统发生分析中,在基于核苷酸序列构建的NJ树中,野猪DRB位点的15种等位基因全部聚为一枝,没有发现跨种多态现象;而在基于氨基酸序列构建的系统发生树中,野猪SLA-DRB*nnu6和人DRB基因exon 2片段聚在一起,这种氨基酸残基的高度相似可能是由于自然选择压力下产生的趋同.野猪DRB基因exon 2的序列多态性分析表明,东北野猪基因多态性低于四川野猪和华南野猪,这可能与不同气候条件和地理环境下的寄生虫等因素对SLA等位基因变异的影响存在差异有关.  相似文献   

10.
利用一对简并引物扩增了尼罗鳄MHCⅡ类分子B基因第二外元的部分片段,并对PCR产物进行了克隆和测序,结果得到8种不同的序列,序列长度为166 bp;经分析,序列中有56个变异位点,核苷酸的非同义替换多于同义替换,造成30个位点氨基酸的改变,氨基酸的替换趋于集中在假定的抗原结合位点附近.核苷酸和氨基酸序列与已报道的扬子鳄和密河鳄的MHCⅡ类B基因第二外元序列有较高的同源性,利用PAUP4.0软件构建的NJ树显示,鳄类的MHCⅡ类B基因存在跨种多态性现象.  相似文献   

11.
Allelic variation in the major histocompatibility class (MHC) IIB gene of salmonids is analyzed for patterns indicative of natural selection acting at the molecular level. Sequence data for the second exon of this MHC gene were generated for 11 species in three salmonid genera: Oncorhynchus, Salmo, and Salvelinus. Phylogenetic analysis of nucleotide sequences revealed: (1) monophyletic grouping of alleles from each genus, (2) transspecies evolution of alleles within Salmo and Salvelinus, and (3) differential patterns of transspecies evolution within the genus Oncorhynchus. Within Oncorhynchus, five of seven species had alleles that were species-specific or nearly so, while the remaining two, O. mykiss and O. clarkii, retained ancestral polymorphisms. The different patterns in Oncorhynchus and the other two genera could be due to historical demographic effects or functional differences in MHC molecules in the three genera, but the two hypotheses could not be distinguished with the current dataset. An analysis of recombination/gene conversion identified numerous recombinant alleles, which is consistent with what has been found in other vertebrate taxa. However, these gene conversion events could not account for the species-specific allelic lineages observed in five of the Oncorhynchus species. Analyses of the relative rates of nonsynonymous and synonymous substitutions revealed the signature of selection on the class IIB gene in all 11 of the salmonid species for both the ABS and the non-ABS codons. Codon-based analyses of selection identified seven codons that have experienced selection in the majority of the species. More than half of these sites were mammalian ABS codons, but several were not, suggesting subtle functional differences in the mammalian and teleost fish MHC molecules.  相似文献   

12.
Genes of the major histocompatibility complex (MHC) exhibit heterozygote advantage in immune defence, which in turn can select for MHC‐disassortative mate choice. However, many species lack this expected pattern of MHC‐disassortative mating. A possible explanation lies in evolutionary processes following gene duplication: if two duplicated MHC genes become functionally diverged from each other, offspring will inherit diverse multilocus genotypes even under random mating. We used locus‐specific primers for high‐throughput sequencing of two expressed MHC Class II B genes in Leach's storm‐petrels, Oceanodroma leucorhoa, and found that exon 2 alleles fall into two gene‐specific monophyletic clades. We tested for disassortative vs. random mating at these two functionally diverged Class II B genes, using multiple metrics and different subsets of exon 2 sequence data. With good statistical power, we consistently found random assortment of mates at MHC. Despite random mating, birds had MHC genotypes with functionally diverged alleles, averaging 13 amino acid differences in pairwise comparisons of exon 2 alleles within individuals. To test whether this high MHC diversity in individuals is driven by evolutionary divergence of the two duplicated genes, we built a phylogenetic permutation model. The model showed that genotypic diversity was strongly impacted by sequence divergence between the most common allele of each gene, with a smaller additional impact of monophyly of the two genes. Divergence of allele sequences between genes may have reduced the benefits of actively seeking MHC‐dissimilar mates, in which case the evolutionary history of duplicated genes is shaping the adaptive landscape of sexual selection.  相似文献   

13.
14.
Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II β1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a “gene walking” technique to obtain intron 2 sequences that flanked MHC class IIβ exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class IIβ loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the β1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations.  相似文献   

15.
Axtner J  Sommer S 《Immunogenetics》2007,59(5):417-426
The generation and maintenance of allelic polymorphism in genes of the major histocompatibility complex (MHC) is a central issue in evolutionary genetics. Recently, the focus has changed from ex situ to in situ populations to understand the mechanisms that determine adaptive MHC polymorphism under natural selection. Birth-and-death evolution and gene conversion events are considered to generate sequence diversity in MHC genes, which subsequently is maintained by balancing selection through parasites. The ongoing arms race between the host and parasites leads to an adaptive selection pressure upon the MHC, evident in high rates of non-synonymous vs synonymous substitution rates. We characterised the MHC class II DRB exon 2 of free living bank voles, Clethrionomys glareolus by single-strand conformation polymorphism and direct sequencing. Unlike other arvicolid species, the DRB locus of the bank vole is at least quadruplicated. No evidence for gene conversion events in the Clgl-DRB sequences was observed. We found not only high allelic polymorphism with 26 alleles in 36 individuals but also high rates of silent polymorphism. Exceptional for MHC class II genes is a purifying selection pressure upon the majority of MHC-DRB sequences. Further, we analysed the association between certain DRB alleles and the parasite burden with gastrointestinal trichostrongyle nematodes Heligmosomum mixtum and Heligmosomoides glareoli and found significant quality differences between specific alleles with respect to infection intensity. Our findings suggest a snapshot in an evolutionary process of ongoing birth-and-death evolution. One allele cluster has lost its function and is already silenced, another is loosing its adaptive value in terms of gastrointestinal nematode resistance, while a third group of alleles indicates all signs of classical functional MHC alleles.  相似文献   

16.
We have conducted an extensive phylogenetic analysis of polymorphic alleles from human and mouse major histocompatibility complex (MHC) class I and class II genes. The phylogenetic tree obtained for 212 complete human class I allele sequences (HLA-A, -B, and -C) has shown that all alleles from the same locus form a single cluster, which is highly supported by bootstrap values, except for one HLA-B allele (HLA-B*7301). Mouse MHC class I loci did not show locus-specific clusters of polymorphic alleles. This was considered to be because of either interlocus genetic exchange or the confusing designation of loci in different haplotypes at the present time. The locus specificity of polymorphic alleles was also observed in human and mouse MHC class II loci. It was therefore concluded that interlocus recombination or gene conversion is not very important for generating MHC diversity, with a possible exception of mouse class I loci. According to the phylogenetic trees of complete coding sequences, we classified human MHC class I (HLA-A, -B, and -C) and class II (DRB1) alleles into three to five major allelic lineages (groups), which were monophyletic with high bootstrap values. Most of these allelic groups remained unchanged even in phylogenetic trees based on individual exons, though this does not exclude the possibility of intralocus recombination involving short DNA segments. These results, together with the previous observation that MHC loci are subject to frequent duplication and deletion, as well as to balancing selection, indicate that MHC evolution in mammals is in agreement with the birth-and-death model of evolution, rather than with the model of concerted evolution.  相似文献   

17.
MHC class II genes in European wolves: a comparison with dogs   总被引:5,自引:5,他引:0  
The genome of the grey wolf, one of the most widely distributed land mammal species, has been subjected to both stochastic factors, including biogeographical subdivision and population fragmentation, and strong selection during the domestication of the dog. To explore the effects of drift and selection on the partitioning of MHC variation in the diversification of species, we present nine DQA, 10 DQB, and 17 DRB1 sequences of the second exon for European wolves and compare them with sequences of North American wolves and dogs. The relatively large number of class II alleles present in both European and North American wolves attests to their large historical population sizes, yet there are few alleles shared between these regions at DQB and DRB1. Similarly, the dog has an extensive array of class II MHC alleles, a consequence of a genetically diverse origin, but allelic overlap with wolves only at DQA. Although we might expect a progression from shared alleles to shared allelic lineages during differentiation, the partitioning of diversity between wolves and dogs at DQB and DRB1 differs from that at DQA. Furthermore, an extensive region of nucleotide sequence shared between DRB1 and DQB alleles and a shared motif suggests intergenic recombination may have contributed to MHC diversity in the Canidae.  相似文献   

18.
19.
In recent years, the bank voleMyodes glareolus (Schreber, 1780) has emerged as a model system for parasitological, behavioural and ecological studies and seems ideally suited to address questions concerning the importance of MHC variation at individual and population levels. Here, we provide the first extensive survey of sequence variation in the MHC class II DRB genes in this species. Among 34 analysed voles we found 15 unique sequences, representing most likely two loci, at least one of them expressed. Despite very high overall sequence divergence, particularly in the Antigen Binding Sites (ABS), we detected signatures of positive selection that has been acting on DRB in the bank vole. Phylogenetic analysis demonstrated that the bank vole DRB alleles do not form a monophyletic group but are intermingled with other rodent alleles that is consistent with long-term persistence of ancient allelic lineages maintained through balancing selection. Our sequence data will forward the design of efficient genotyping methods, which will permit testing hypotheses pertaining to the ecological causes and consequences of MHC variation in the bank vole.  相似文献   

20.
Genes of the vertebrate major histocompatibility complex (MHC) are crucial to defense against infectious disease, provide an important measure of functional genetic diversity, and have been implicated in mate choice and kin recognition. As a result, MHC loci have been characterized for a number of vertebrate species, especially mammals; however, elephants are a notable exception. Our study is the first to characterize patterns of genetic diversity and natural selection in the elephant MHC. We did so using DNA sequences from a single, expressed DQA locus in elephants. We characterized six alleles in 30 African elephants (Loxodonta africana) and four alleles in three Asian elephants (Elephas maximus). In addition, for two of the African alleles and three of the Asian alleles, we characterized complete coding sequences (exons 1–5) and nearly complete non-coding sequences (introns 2–4) for the class II DQA loci. Compared to DQA in other wild mammals, we found moderate polymorphism and allelic diversity and similar patterns of selection; patterns of non-synonymous and synonymous substitutions were consistent with balancing selection acting on the peptides involved in antigen binding in the second exon. In addition, balancing selection has led to strong trans-species allelism that has maintained multiple allelic lineages across both genera of extant elephants for at least 6 million years. We discuss our results in the context of MHC diversity in other mammals and patterns of evolution in elephants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号