首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Air temperature, vapor pressure deficit, and light intensity microclimatic gradients were examined along four forest edge and four paired forest interior transects in the East and West Usambara Mountains, Tanzania. Between 14 August 1995 and 11 August 1998, 287, 282, and 196 air temperature, vapor pressure deficit, and light intensity gradients, respectively, were measured along the four forest edge and four interior transects. The relationship between microclimate and distance from the forest edge was examined using piecewise linear regression. All microclimatic gradients were classified into one of nine shapes based on the sign and the size of the two estimated slopes. The relative frequency in the shapes of 65 percent of air temperature gradients, 52 percent of vapor pressure deficit gradients, and 62 percent of light intensity gradients along forest edge transects exceeded the relative frequency of these same shapes along forest interior transects, indicating that a majority of the forest edge microclimatic gradients measured were influenced by edge effects. Yet this result also indicated that approximately one‐third of all air temperature and light intensity gradients and nearly one‐half of all vapor pressure deficit gradients recorded during this study were affected by factors independent of edge effects per se, and that forest edge microclimatic gradients were temporally nonconstant. For air temperature and vapor pressure deficit gradients, low spatial but high temporal variation existed in estimated edge width and the relative change in microclimate between the forest edge and interior. For light intensity gradients, both high spatial and temporal variability characterized estimated edge width and relative change in microclimate between the forest edge and interior. The pooled mean edge width and relative change in microclimate between die forest edge and interior across the four forest edge transects for air temperature, vapor pressure deficit, and light intensity gradients were 94.1 m and 2.00°C, 82.6 m and 0.29 kPa, and 60.5 m and 10.6 joules/sec/m2, respectively. These results suggest that forest edge microclimatic gradients in general may be inherently dynamic and nonconstant.  相似文献   

2.
李猛  段文标  陈立新 《应用生态学报》2009,20(12):2853-2860
以小兴安岭原始红松阔叶混交林林隙为研究对象,通过对林隙内光量子通量密度(PPFD)、气温和空气相对湿度进行连续观测,比较其间的时空分布格局.结果表明:晴天和阴天阔叶红松林林隙的PPFD日最大值均出现在11:00—13:00,晴天林隙内各个时段最大值出现位置不同,日最大值出现在林隙北侧林冠边缘处;而阴天各个时段最大值均处于林隙的中心.林隙内月平均PPFD 为6月最高、9月最低,极差7月最大.林隙内晴天气温的峰值出现在9:00—15:00,而阴天气温峰值在15:00—19:00,均位于林隙中心南8 m.5:00—9:00林隙各点阴天的气温都高于晴天,9:00—19:00则相反.月平均气温为6月最高、9月最低.晴天和阴天空气相对湿度的峰值均出现在5:00—9:00,日最大值在林隙西侧林冠边缘处,且阴天的相对湿度始终大于晴天.月平均相对湿度为7月最高、6月最低.晴天PPFD的异质性大于阴天,而气温和相对湿度的异质性则不明显.生长季内不同月份PPFD、气温和空气相对湿度的最大值所处位置不同.PPFD和气温的月均值在林隙中心及附近变化梯度较大,而相对湿度的月均值则在林隙边缘变化梯度较大.  相似文献   

3.
本文研究了卧龙国家自然保护区地表甲虫群落在天然落叶阔叶林森林边缘与森林内部和周围草地间多样性差异,在科级水平上探讨边缘效应对地表甲虫群落的影响。调查共设5个重复样带(间距大于500 m);每个样带以距离梯度(25 m)的方式设置样点,分别由边缘深入到森林内部和草地中央100 m,共设45个样点,通过巴氏罐诱法调查地表甲虫群落组成和季节变化。本研究采集甲虫标本4 736 号,隶属于28个科,步甲科、隐翅虫科和叩甲科分别占总数的49.5%、23.5%和13.0%,共同构成本研究地区地表甲虫的优势类群。甲虫的个体数量从森林内部、边缘到周围草地依次降低,而科多样性和均匀度则依次增高,都达到了显著差异。主坐标分析(PCoA)排序表明,森林内部和周围草地间的地表甲虫群落组成差异较大;而森林边缘的群落组成与两者都有较高程度的相似性,反映了森林边缘的地表甲虫群落已经与森林内部的群落组成发生明显分化,除了森林物种成分外,还包含了若干从周围草地环境扩散来的物种成分。从季节动态看,森林边缘和森林内部在丰富度和个体数量的季节变化曲线方面相似性更高;捕食类和腐食类地表甲虫的季节变化在森林内部和边缘相似性更高,而植食类则在森林边缘和草地的相似性更高。多元回归分析表明,枯落物覆盖率是影响地表甲虫科多样性和均匀度的决定因素,枯落物厚度和林冠层覆盖率是决定甲虫个体数量分布的重要因素。以上结果表明,在科级水平上,地表甲虫群落在天然落叶阔叶林边缘已经与森林内部生境发生分化,而且正在加剧的森林片断化进程将会产生更多的森林边缘,因此,保留大面积的天然落叶阔叶林免受破坏和干扰是保护地表甲虫多样性的必要措施。  相似文献   

4.
全球范围内森林片断化现象日益严重。与其他木本植物(乔木和灌木)相比, 木质藤本更趋向于分布在片断化森林的边缘, 因而了解木质藤本对边缘效应的响应对于进一步了解其对森林动态的影响极其必要。本文对哀牢山中山湿性常绿阔叶林林缘到林内环境梯度上木质藤本的变化进行了调查。在形成年龄分别为13年、35年和53年的3种类型的林缘, 设置从林缘向林内连续延伸的长方形样地(20 m × 50 m)各10个(总面积3 ha), 每个样地再划分为5个20 m × 10 m的样方。在每个样方内对胸径≥ 0.2 cm且长度≥ 2.0 m的木质藤本进行了每木调查。在3 ha的林缘样地中共记录到木质藤本植物2,426株, 隶属于14科19属31种。木质藤本的物种丰富度和多度均随距林缘距离的增加而降低, 边缘效应深度在35年林缘的边缘为30 m, 13和53年林缘的边缘则为20 m; 它们的胸高断面积在53年林缘的边缘效应深度为20 m, 但在13和35年林缘的不同距离上差异不显著。木质藤本对边缘效应的响应在物种水平上存在显著差异, 主要呈现正向和中性的响应格局, 包括只分布于林缘的物种, 和从林缘到林内环境梯度上密度逐渐降低的物种; 也有对边缘效应不敏感的物种。典范对应分析(CCA)表明, 林冠开度、边缘形成年龄和土壤水分是决定木质藤本在片断化森林边缘分布的重要影响因子。  相似文献   

5.
Water loss at increasing temperature in dry air (< 5% r.h.) was measured for the eight stadia of Polydesmus angustus Latzel (Diplopoda, Polydesmida: Polydesmidae). Instantaneous rates of water loss, expressed as percentages of original body water, were calculated at 20, 25 and 30°C. At each temperature, the rate of water loss varied greatly among stadia, decreasing between 15‐ and 18‐fold from stadium I to stadium VII, and then significantly increasing from stadium VII to stadium VIII (adult). In all stadia, the rate of water loss increased with rising temperature, but the temperature effect was much more pronounced in juveniles than in larger stadia. The threshold temperature of heat stupor, which was measured from stadium IV onwards, increased significantly during development, from 35.6°C in stadium IV to 39.5°C in adults. Survival at 20°C and 76% r.h. varied as could be expected from the water loss rates in dry air, survival time increasing from stadium I to stadium VII and then decreasing from stadium VII to the adult stage. The maximum tolerable water loss, estimated for stadia V, VII and adults, did not change significantly among stadia (mean: 47% of the original water content), suggesting that survival times under desiccating conditions depended primarily on the rates of water loss. The relevance of the results in terms of summer survival under natural conditions is discussed, and it is concluded that juvenile mortality could be substantial in the field. This is important for understanding the adaptive value of cohort‐splitting in P. angustus.  相似文献   

6.
Given anticipated climate changes, it is crucial to understand controls on leaf temperatures including variation between species in diverse ecosystems. In the first study of leaf energy balance in tropical montane forests, we observed current leaf temperature patterns on 3 tree species in the Atlantic forest, Brazil, over a 10‐day period and assessed whether and why patterns may vary among species. We found large leaf‐to‐air temperature differences (maximum 18.3 °C) and high leaf temperatures (over 35 °C) despite much lower air temperatures (maximum 22 °C). Leaf‐to‐air temperature differences were influenced strongly by radiation, whereas leaf temperatures were also influenced by air temperature. Leaf energy balance modelling informed by our measurements showed that observed differences in leaf temperature between 2 species were due to variation in leaf width and stomatal conductance. The results suggest a trade‐off between water use and leaf thermoregulation; Miconia cabussu has more conservative water use compared with Alchornea triplinervia due to lower transpiration under high vapour pressure deficit, with the consequence of higher leaf temperatures under thermal stress conditions. We highlight the importance of leaf functional traits for leaf thermoregulation and also note that the high radiation levels that occur in montane forests may exacerbate the threat from increasing air temperatures.  相似文献   

7.
Football (soccer) training and matches are scheduled at different times throughout the day. Association football involves a variety of fitness components as well as psychomotor and game‐related cognitive skills. The purpose of the present research, consisting of two separate studies, was to determine whether game‐related skills varied with time of day in phase with global markers of both performance and the body clock. In the first study, eight diurnally active male association football players (19.1±1.9 yrs of age; mean±SD) with 10.8±2.1 yrs playing experience participated. Measurements were made on different days at 08:00, 12:00, 16:00, and 20:00 h in a counterbalanced manner. Time‐of‐day changes in intra‐aural temperature (used as a marker of the body clock), grip strength, reaction times, flexibility (markers of aspects of performance), juggling and dribbling tasks, and wall‐volley test (football‐specific skills) were compared. Significant (repeated measures analysis of variance, ANOVA) diurnal variations were found for body temperature (p<0.0005), choice reaction time (p<0.05), self‐rated alertness (p<0.0005), fatigue (p<0.05), forward (sit‐and‐reach) flexibility (p<0.02), and right-hand grip strength (p<0.02), but not left-hand grip strength (p=0.40) nor whole‐body (stand‐and‐reach) flexibility (p=0.07). Alertness was highest and fatigue lowest at 20:00 h. Football‐specific skills of juggling performance showed significant diurnal variation (p<0.05, peak at 16:00 h), whereas performance on the wall‐volley test tended to peak at 20:00 h and dribbling showed no time‐of‐day effect (p=0.55). In a second study, eight diurnally active subjects (23.0±0.7 yrs of age) completed five test sessions, at the same times as in the first study but with a second session at 08:00 h. Test‐re‐test comparisons at 08:00 h for all components indicated good reliability. Intra‐aural temperature showed a significant time‐of‐day effect (p<0.001) with mean temperature at 16:00 h (36.4°C) higher than at 08:00 h (35.4°C). There was no significant effect of chronotype on the temperature acrophase (peak time) (p>0.05). Diurnal variation was found for performance tests, including sit‐and‐reach flexibility (p<0.01) and spinal hyper‐extension (p<0.05). Peaks occurred between 16:00 and 20:00 h and the daytime changes paralleled the temperature rhythm. Diurnal variation was also found for football‐specific tests, including dribbling time (p<0.001, peak at 20:00 h) and chip test performance (p<0.01), being more accurate at 16:00 h (mean error=0.75 m) than at 08:00 h (mean error=1.01 m). Results indicate football players perform at an optimum between 16:00 and 20:00 h when not only football‐specific skills but also measures of physical performance are at their peak. Body temperature peaked at a similar time, but positive mood states seemed to peak slightly earlier. While causal links cannot be established in these experiments, the results indicate that the diurnal variation of some aspects of football performance is affected by factor(s) other than body temperature alone.  相似文献   

8.
A world-wide study of high altitude treeline temperatures   总被引:43,自引:0,他引:43  
Aim At a coarse scale, the treelines of the world's mountains seem to follow a common isotherm, but the evidence for this has been indirect so far. Here we aim at underpinning this with facts. Location We present the results of a data‐logging campaign at 46 treeline sites between 68° N and 42° S. Methods We measured root‐zone temperatures with an hourly resolution over 1–3 years per site between 1996 and 2003. Results Disregarding taxon‐, landuse‐ or fire‐driven tree limits, high altitude climatic treelines are associated with a seasonal mean ground temperature of 6.7 °C (±0.8 SD; 2.2 K amplitude of means for different climatic zones), a surprisingly narrow range. Temperatures are higher (7–8 °C) in the temperate and Mediterranean zone treelines, and are lower in equatorial treelines (5–6 °C) and in the subarctic and boreal zone (6–7 °C). While air temperatures are higher than soil temperatures in warm periods, and are lower than soil temperatures in cold periods, daily means of air and soil temperature are almost the same at 6–7 °C, a physics driven coincidence with the global mean temperature at treeline. The length of the growing season, thermal extremes or thermal sums have no predictive value for treeline altitude on a global scale. Some Mediterranean (Fagus spp.) and temperate South Hemisphere treelines (Nothofagus spp.) and the native treeline in Hawaii (Metrosideros) are located at substantially higher isotherms and represent genus‐specific boundaries rather than boundaries of the life‐form tree. In seasonal climates, ground temperatures in winter (absolute minima) reflect local snow pack and seem uncritical. Main conclusions The data support the hypothesis of a common thermal threshold for forest growth at high elevation, but also reflect a moderate region and substantial taxonomic influence.  相似文献   

9.
The present study is part of a more extensive investigation dedicated to the study and treatment of age‐dependent changes/disturbances in the circadian system in humans. It was performed in the Tyumen Elderly Veteran House and included 97 subjects of both genders, ranging from 63 to 91 yrs of age. They lived a self‐chosen sleep‐wake regimen to suit their personal convenience. The experiment lasted 3 wks. After 1 control week, part of the group (n=63) received 1.5 mg melatonin (Melaxen?) daily at 22:30 h for 2 wks. The other 34 subjects were given placebo. Axillary temperature was measured using calibrated mercury thermometers at 03:00, 08:00, 11:00, 14:00, 17:00, and 23:00 h each of the first and third week. Specially trained personnel took the measurements, avoiding disturbing the sleep of the subjects. To evaluate age‐dependent changes, data obtained under similar conditions on 58 young adults (both genders, 17 to 39 yrs of age) were used. Rhythm characteristics were estimated by means of cosinor analyses, and intra‐ and inter‐individual variability by analysis of variance (ANOVA). In both age groups, the body temperature underwent daily changes. The MESOR (36.38±0.19°C vs. 36.17±0.21°C) and circadian amplitude (0.33±0.01°C vs. 0.26±0.01°C) were slightly decreased in the elderly compared to the young adult subjects (p<0.001). The mean circadian acrophase was similar in both age groups (17.19±1.66 vs. 16.93±3.08 h). However, the inter‐individual differences were higher in the older group, with individual values varying between 10:00 and 23:00 h. It was mainly this phase variability that caused a decrease in the inter‐daily rhythm stability and lower group amplitude. With melatonin treatment, the MESOR was lower by 0.1°C and the amplitude increased to 0.34±0.01°C, a similar value to that found in young adults. This was probably due to the increase of the inter‐daily rhythm stability. The mean acrophase did not change (16.93 vs. 16.75 h), although the inter‐individual variability decreased considerably. The corresponding standard deviations (SD) of the group acrophases were 3.08 and 1.51 h (p<0.01). A highly significant correlation between the acrophase before treatment and the phase change under melatonin treatment indicates that this is due to a synchronizing effect of melatonin. Apart from the difference in MESOR, the body temperature rhythm in the elderly subjects undergoing melatonin treatment was not significantly different from that of young adults. The data clearly show that age‐dependent changes mainly concern rhythm stability and synchronization with the 24 h day. A single daily melatonin dose stabilizes/synchronizes the body temperature rhythm, most probably via hypothermic and sleep‐improving effects.  相似文献   

10.
Understanding climatic influences on the proportion of evergreen versus deciduous broad‐leaved tree species in forests is of crucial importance when predicting the impact of climate change on broad‐leaved forests. Here, we quantified the geographical distribution of evergreen versus deciduous broad‐leaved tree species in subtropical China. The Relative Importance Value index (RIV ) was used to examine regional patterns in tree species dominance and was related to three key climatic variables: mean annual temperature (MAT ), minimum temperature of the coldest month (MinT), and mean annual precipitation (MAP ). We found the RIV of evergreen species to decrease with latitude at a lapse rate of 10% per degree between 23.5 and 25°N, 1% per degree at 25–29.1°N, and 15% per degree at 29.1–34°N. The RIV of evergreen species increased with: MinT at a lapse rate of 10% per °C between ?4.5 and 2.5°C and 2% per °C at 2.5–10.5°C; MAP at a lapse rate of 10% per 100 mm between 900 and 1,600 mm and 4% per 100 mm between 1,600 and 2,250 mm. All selected climatic variables cumulatively explained 71% of the geographical variation in dominance of evergreen and deciduous broad‐leaved tree species and the climatic variables, ranked in order of decreasing effects were as follows: MinT > MAP  > MAT . We further proposed that the latitudinal limit of evergreen and deciduous broad‐leaved mixed forests was 29.1–32°N, corresponding with MAT of 11–18.1°C, MinT of ?2.5 to 2.51°C, and MAP of 1,000–1,630 mm. This study is the first quantitative assessment of climatic correlates with the evergreenness and deciduousness of broad‐leaved forests in subtropical China and underscores that extreme cold temperature is the most important climatic determinant of evergreen and deciduous broad‐leaved tree species’ distributions, a finding that confirms earlier qualitative studies. Our findings also offer new insight into the definition and distribution of the mixed forest and an accurate assessment of vulnerability of mixed forests to future climate change.  相似文献   

11.
Abstract In the Waikato Region of New Zealand, Pinus radiata (D. Don) plantations are becoming increasingly common on land adjacent to native forest fragments. It is unclear whether this juxtaposition is beneficial or detrimental to native forest fragment quality and persistence. We hypothesized that adjacent dense plantations buffer native fragments from microclimatic exposure, reducing edge effects and expanding the area of interior‐like native forest. Microclimate parameters were measured in native forest fragments adjacent to grazed pasture (‘abrupt’ edges) and in fragments adjacent to mature P. radiata plantations (‘embedded’ edges) during late summer. Photosynthetically active radiation, air temperature and vapour pressure deficit (VPD) were measured along transects perpendicular to edges during the mid‐afternoon, when gradients were typically steady and maximal, to investigate spatial variation. At paired abrupt versus embedded edges these same variables were monitored for week‐long periods to determine temporal variation. In fragments adjacent to pasture, conditions were significantly lighter and warmer (but not drier) than the interior along transects at distances up to 20 m from the edge. In contrast, no variables differed significantly along transects adjacent to pine. The different microclimate variables measured at edges (except VPD) contributed to edge effects at different times through a daily cycle. Photosynthetically active radiation was significantly different between abrupt and embedded edges at all times of the day. Air temperature was significantly different during mid‐day and afternoon, but not during the morning nor at night. Vapour pressure deficit varied considerably over time and between sites, but was never consistently higher at one type of edge. We conclude that pine plantations in the Waikato Region provide valuable microclimate buffering during the day, principally due to their effect in reducing light and temperature to interior‐like conditions at native forest edges. Consequently, plantations are a compatible neighbouring land use to forest fragments. Such buffering could be extended through the pine harvesting‐replanting phase with appropriate management, such as leaving an undisturbed margin during harvest.  相似文献   

12.
Sea turtles show temperature dependent sex determination. Using an empirical relationship between sand and air temperature, we reconstructed the nest temperatures since 1855 at Ascension Island, a major green turtle (Chelonia mydas) rookery. Our results show that inter‐beach thermal variations, previously ascribed to the albedo of the sand, which varies hugely from one beach to another, have persisted for the last century. Reconstructed nest temperatures varied by only 0.5 °C on individual beaches over the course of the nesting season, while the temperature difference between two key nesting beaches was always around 3 °C. Hence inter‐beach thermal variations are the main factor causing a large range of incubation temperatures at this rookery. There was a general warming trend for nests, with a mean increase in reconstructed nest temperatures for different months of between 0.36 and 0.49 °C for the last 100 years.  相似文献   

13.
ABSTRACT Edge effects along tropical forest–pasture margins are thought to cause a shift toward early successional characteristics of the understory forest vegetation. We tested this idea by sampling vegetation at five forest sites in northeast Costa Rica each of which had edges that were established over 20 yr earlier. Four of these sites had been selectively logged. We sampled woody plants >0.2 and ≤1.3 m height in 54 m2 within 0.2 ha plots at edges (N=14), and at 150 m (N=11) and 300 m from edges (N=9). Composition and diversity did not vary with edge distance. Abundance of tree regeneration, mainly of canopy and emergent species, increased at edges. Abundance of lianas and slow‐growing tree species did not differ significantly across the sampling locations. Weighted mean wood density varied little, with a reduction at edges for canopy species. Palms were less abundant at edges, but not less species rich. At edges, these plant assemblages maintain many of the characteristics of forest interior vegetation, though the changes observed may indicate ongoing functional change. Degradation of forest–pasture edges is not a universal feature of tropical forest fragmentation, and forests with high rates of natural turnover might have a high capacity to maintain themselves within forest edges alongside pasture.  相似文献   

14.
The adult behavior of an ambrosia gall midge Illiciomyia yukawai (Diptera: Cecidomyiidae) that induces leaf galls on Illicium anisatum (Illiciaceae) was studied at the population level from 1977 to 1995 in Kagoshima, Japan. Most males emerged between 0:00 and 08:00 h and females between 05:00 and 11:00 h. Males swarmed around the host trees between 05:00 and 11:00 h. Mating occurred on the host leaves mainly between 06:00 and 08:00 h. Females then left the host trees for somewhere else, possibly to collect symbiont fungal conidia. From 08:00 to 16:00 h, females were observed ovipositing into the host shoots. The low development threshold temperature for overwintered larvae was 14°C, while the thermal constant for emergence differed with individuals. Thermal totals above 14°C up to the 50% emergence date varied yearly from 33.1 to 68.7 degree‐days. The 50% emergence date varied from 9 to 18 May. The thermal totals significantly correlated with the 50% emergence date but did not correlate with the date when 50% of shoots became suitable for oviposition. Thus, the host‐plant responded to thermal effects differently from the gall midge. Illiciomyia yukawai has been synchronizing well with the host‐plant phenology but will suffer from asynchrony when global warming becomes more conspicuous.  相似文献   

15.
Logging activities and the associated creation of roads and tracks can disturb and fragment forests, which may lead to a loss of forest‐dependent species and possibly favour nonforest generalists and edge species. The effects of such disturbance are poorly known for African insectivorous bats. We studied the activity patterns of insectivorous bats in a tropical African forest at Kibale National Park, Uganda, using an Anabat bat detector. The echolocation calls of the vespertilionid bat Neoromicia nana were the most frequently detected. This species was most active in the first 5 h after sunset with activity declining rapidly after midnight until sampling finished at 01:00 h. There was no difference in activity of N. nana levels between logged or undisturbed forest; however, this species exhibited higher levels of activity along the wide tracks running through the two forests than either 30 m off these tracks or along the narrow forest trails. The wing morphology and echolocation call of N. nana may be constraining it to flying in uncluttered space on the edge of the forest, penetrating mostly along wider tracks and roads. Further research (in particular radio‐telemetry) is required to test and validate these data.  相似文献   

16.
缙云山片断常绿阔叶林小气候边缘效应的初步研究   总被引:2,自引:0,他引:2  
对缙云山5个片断常绿阔叶林和1个连续常绿阔叶林林缘附近的小气候要素水平梯度分布进行测定.结果表明,各片断阔叶林斑块边缘均存在明显的小气候边缘效应.林缘与林内最高和最低气温、光合有效辐射、最小相对湿度均为干季高于或大于雨季,而地表最高温度则为雨季高于干季;各阔叶林斑块的小气候边缘效应以最大斑块波及林内的深度最浅、最小斑块波及林内的深度最深.  相似文献   

17.
Mountain forests are at particular risk of climate change impacts due to their temperature limitation and high exposure to warming. At the same time, their complex topography may help to buffer the effects of climate change and create climate refugia. Whether climate change can lead to critical transitions of mountain forest ecosystems and whether such transitions are reversible remain incompletely understood. We investigated the resilience of forest composition and size structure to climate change, focusing on a mountain forest landscape in the Eastern Alps. Using the individual‐based forest landscape model iLand, we simulated ecosystem responses to a wide range of climatic changes (up to a 6°C increase in mean annual temperature and a 30% reduction in mean annual precipitation), testing for tipping points in vegetation size structure and composition under different topography scenarios. We found that at warming levels above +2°C a threshold was crossed, with the system tipping into an alternative state. The system shifted from a conifer‐dominated landscape characterized by large trees to a landscape dominated by smaller, predominantly broadleaved trees. Topographic complexity moderated climate change impacts, smoothing and delaying the transitions between alternative vegetation states. We subsequently reversed the simulated climate forcing to assess the ability of the landscape to recover from climate change impacts. The forest landscape showed hysteresis, particularly in scenarios with lower precipitation. At the same mean annual temperature, equilibrium vegetation size structure and species composition differed between warming and cooling trajectories. Here we show that even moderate warming corresponding to current policy targets could result in critical transitions of forest ecosystems and highlight the importance of topographic complexity as a buffering agent. Furthermore, our results show that overshooting ambitious climate mitigation targets could be dangerous, as ecological impacts can be irreversible at millennial time scales once a tipping point has been crossed.  相似文献   

18.
The study determined linear edge effects on liana and tree community assemblages in moist semi-deciduous (Afram Headwaters Forest Reserve) and upland evergreen (Tano Offin Forest Reserve) forests in Ghana. Fifteen plots (20 × 20 m2) were randomly set up at each habitat in the forests: edge habitat (0–40 m) and interior habitat (≥500 m). Lianas (diameter at 1.30 m from rooting base ≥1 cm) and trees (diameter at breast height, dbh ≥5 cm) were identified and enumerated in the plots. In the forest ecosystems, liana and tree species composition differed significantly between the two habitats. Liana and tree diversity did not differ significantly between edge and interior habitats. Nevertheless, edge habitat in moist semi-deciduous forest supported significantly higher liana abundance and basal area than its interior habitat, whereas edge habitat in upland evergreen forest harboured significantly lower liana basal area than its corresponding interior habitat. Edge habitat in moist semi-deciduous and upland evergreen forests had significantly lower tree abundance and basal area, respectively, than interior habitat. The results suggest that overall, linear edge effects on liana and tree assemblages were more pronounced in moist semi-deciduous forest than upland evergreen forest. Lianas exhibited dominance over trees in edge habitat within moist semi-deciduous forest, implying that they can have serious implications on tree diversity and ecosystem functioning in the forest. As our study is the first of its kind in the tropics with respect to edge type and forest ecosystems studied, our findings can contribute towards edge theory development.  相似文献   

19.
Leaf samples and tree rings formed between the mid‐1960s and mid‐1990s from sugar maple (Acer saccharum Marsh.) at Gatineau Park (45°30′ N, 75°54′ W), Quebec were analysed for δ13C. Leaf samples were collected at ground level (1–2 m above ground) at monthly intervals during the summer, whereas tree cores were extracted from the largest trees (d.b.h. > 30 cm) in the young deciduous forest in August 1998. Significant linear decreases in δ13C over time were found in foliage and tree rings, but the decrease in δ13C was significantly greater in foliage than in the wood. The apparent isotopic discrimination (Δ) of tree rings varied insignificantly around a mean of 18‰, whereas foliar Δ increased significantly from 19‰ in the 1960s to around 23‰ by the mid 1990s, likely as a result of an increasing canopy effect as the forest matured. Using models of carbon discrimination and Δ‐values of the tree rings, we calculate that the intrinsic water use efficiency of mature sugar maple has increased by approximately 4% over the study period.  相似文献   

20.
Edge structure is one of the principal determinants of the extent and magnitude of edge effects in forest fragments. In central Amazonia, natural succession at forest edges typically produces a dense wall of vegetation dominated by Cecropia spp. that buffers the forest interior. Fire encroachment into forest edges, however, eliminates the soil seed bank, enhances plant mortality, and promotes succession to an open, Vismia–dominated edge that does not buffer the forest interior. Contrasting open, fire–encroached forest edges and closed, non–fire–encroached edges were examined in central Amazonia to assess the effects of edge structure on microclimate and vegetation structure in tropical forest fragments. Edge penetration distances for most microclimate and vegetation structure variables were as much as two to five times greater at open edges than at closed edges. The magnitude of these differences suggests that edge structure is one of the main determinants of microclimate and vegetation structure within tropical forest fragments. Edge effects also varied systematically with fragment area. For a given edge type, 100–ha fragments had consistently lower canopy height, higher foliage density, higher temperature, a higher rate of evaporative drying, lower leaf litter moisture content, and lower litter depth than continuous forest, at all distances from the forest edge. These differences, however, were relatively minor compared to the striking differences in edge penetration between open and closed forest edges. For organisms in small fragments, the difference between open and closed edges may be the difference between total edge encroachment on one hand and an effective nature reserve on the other, relatively independent of absolute fragment area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号