首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用分子蒸馏技术提纯海南山苍子油,用GC对山苍子里面柠檬醛质量分数和收率进行分析,实验表明获得高纯度、高收率柠檬醛的工业条件是:转数395 rpm,加料速度1.5滴/s,冷却水-5℃,一次分馏温度45℃、压力1 mbar;二次分流温度60℃,压力1 mbar,柠檬醛的质量分数为95.68%,产率为86.60%。  相似文献   

2.
山苍子油的精制、分析及成份研究   总被引:3,自引:0,他引:3  
本文报告一种山苍子油的精制、分析方法和成分研究.作者采用间歇精馏法从山苍子油中单离柠檬醛,可使柠檬醛含量达到90%以上;并使用毛细管气相色谱法定量测定了山苍子油中柠檬醛含量;还通过GC/ITD/COM系统从山苍子油中成功地分离出50种左右的成分,其中30多种化合物己被鉴定.  相似文献   

3.
袁爱萍  陆建荣  丁立生   《广西植物》1990,(4):369-371
采用气—质—计算机联用法对云南柠檬草油进行定性定量分析,分离出22种成份,占全精油含量的98.23%,鉴定了其中的15种成份,其中主要成份是:月桂烯(14.61%),顺-β-罗勒烯(0.61%),芳樟醇(1.98%),香茅醛(0.65%),柠檬烯氧化物(6.43%),反-柠檬醛b(35.24%),顺-柠檬醛a(36.69%)。  相似文献   

4.
袁爱萍  陆建荣  丁立生   《广西植物》1990,10(4):369-371
采用气—质—计算机联用法对云南柠檬草油进行定性定量分析,分离出22种成份,占全精油含量的98.23%,鉴定了其中的15种成份,其中主要成份是:月桂烯(14.61%),顺-β-罗勒烯(0.61%),芳樟醇(1.98%),香茅醛(0.65%),柠檬烯氧化物(6.43%),反-柠檬醛b(35.24%),顺-柠檬醛a(36.69%)。  相似文献   

5.
佛手挥发油特征化学成分群GC-MS研究   总被引:2,自引:0,他引:2  
目的:分析6个不同产地佛手挥发油的化学成分,确定其特征化学指标成分群.方法:采用水蒸气蒸馏法提取佛手挥发油.运用气相色谱质谱联用技术(GC-MS),结合计算机检索对其化学成分进行分离和鉴定,得到其共有的特征性化学成分群,用色谱峰面积归一化法计算各组分的相对含量.结果:从广东、四川、金华、广西、安徽佛手的挥发油中鉴定16种共有特征成分,按保留时间的先后顺序分别为:α-水芹烯、α-蒎烯、β-蒎烯、β-月桂烯、α-萜品油烯、邻伞花烃、柠檬烯、顺式-β-罗勒烯、反式-β-罗勒烯、γ-萜品烯、γ-萜品油烯、乙酸芳樟酯、顺式-水合桧烯、α-萜品醇、β-柠檬醛、α-柠檬醛,其占总峰面积的的比例大于82.9%;其中柠檬烯和γ-萜品烯是主要成分,两者峰面积占总峰面积的比例大于65%.结论:所建立的特征成分群能充分地袁征佛手挥发油化学组成,可以为佛手挥发油的质量评价提供参考.  相似文献   

6.
目的:鉴定得到的植物为香茅,分析香茅挥发油主要成分及其含量。方法:使用通用DNA条形码片段(psbA-trnH)对香茅的DNA进行扩增测序,利用BLAST生物信息学软件对数据进行处理分析,绘制遗传距离树,进行种属鉴定,利用水蒸气蒸馏法提取香茅挥发油并通过GC-MS气质联用技术对香茅挥发油各组分含量进行分析。结果:psbA-trnH序列扩增测序确认所测植物为香茅属植物且具有较高的成功率;通过GC-MS共分离出43个峰,数据分析结果显示各组分占比如下:香茅醇(12.76%)、香叶醇(14.54%)、柠檬醛(5.33%)、榄香醇(12.57%)。结论:叶绿体间隔区的psbA-trnH序列可以作为香茅的条形码候选序列。福建香茅的主要挥发成分为香茅醇、香叶醇、柠檬醛、榄香醇等萜类及其含氧衍生物。  相似文献   

7.
为探究山苍子不同种之间化学成分及抑菌效果的差异,本研究通过生长速率法和抑菌圈法测定三种山苍子精油对尖孢镰刀菌、大肠杆菌和李斯特菌的抑菌活性,同时对三种山苍子精油进行GC-MS挥发性成分鉴定,进一步对精油主要化学成分与抑菌率进行相关性分析。结果表明,山鸡椒果实精油含量最高且对尖孢镰刀菌、大肠杆菌和李斯特菌的抑菌效果优于毛叶木姜子和毛山鸡椒;三种山苍子精油抑菌效率均与柠檬醛、芳樟醇的含量分别呈现显著正相关,提示主要成分柠檬醛含量适合作为山苍子优良精油筛选的可靠指标。研究结果为山苍子精油抗菌物质的开发利用提供了理论依据。  相似文献   

8.
抱茎蓼挥发油成分及其抗菌活性的研究   总被引:10,自引:0,他引:10  
水蒸气蒸馏法从抱茎蓼全草中提取挥发油,用气相色谱-质谱联用技术对其挥发油组分进行分离和鉴定,运用气相色谱面积归一化法确定各组分的相对含量,并利用正构烷烃系列物质对各组分进行定性确定,从抱茎蓼全草的挥发油中检出41个组分,占全油的99.21%,鉴定出38个组分,其主要组分是石竹烯(16.98%)、3-己烯-1-醇(14.69%)、3-辛烯-3醇(8.89%)、a-里哪醇(7.13%)、β-环柠檬醛(6.36%)等。对抱茎蓼全草的挥发油做了抗菌试验,其挥发油对大肠埃希菌(ATCC25922株)、肠炎沙门菌(50040株)、金黄色葡萄球菌(ATCC25925株)有显著地抑制和灭活作用。  相似文献   

9.
为研究刮膜式分子蒸馏过程的数学模型,选用刮膜式短程蒸馏器,采用液氮制冷对橘皮油进行分离。借助传统精馏中的塔板理论和Langmuir-Knudsen等相关理论,对蒸馏过程进行分析,通过物料衡算,建立刮膜式分子蒸馏过程的数学模型,结合模型分析进料速率、蒸馏温度、蒸发面积等因素对产品纯度及收率、理论级数、理论高度的影响,并与实际实验结果对比,二者的偏差不超过11%,验证了模型的合理性,为分子蒸馏器设计的完善提供了一定的理论基础。  相似文献   

10.
为全面评价生姜质量,通过GC-MS和HPLC法分别对不同产地生姜样品中挥发油和姜辣素进行比较分析。结果从9种生姜挥发油中分别鉴定了24~28种化学成分,占挥发油总量的85.31%~93.67%,主要为β-水芹烯(9.96%~20.15%)、莰烯(3.54%~14.53%)、柠檬醛(6.52%~12.49%)、β-柠檬醛(3.96%~7.44%)、姜烯(13.81%~19.74%)、姜黄烯(tr^5.52%)、β-倍半水芹烯(5.08%~6.22%)和β-红没药烯(2.63%~3.34%)等单萜和倍半萜类活性成分。9种生姜样品中6-姜辣素含量在0.067%~0.391%之间,均达到了现行中国药典不低于0.05%的规定。可见不同产地生姜主要活性成分含量差异较大。故以生姜的主要特征性有效成分姜烯、姜黄烯与6-姜酚共同作为其质量评价指标,将更加科学合理。  相似文献   

11.
采用水蒸气蒸馏法和气相色谱技术对取自浙江富阳、贵州毕节和织金、湖南永州、福建永安和建瓯、云南景东、四川长宁、江西安远和分宜10个居群的山苍子[ Litsea cubeba (Lour.) Pers.]果实精油含量和柠檬醛含量进行测定,并分析了果实精油含量和柠檬醛含量与地理-气候因子的相关性;在此基础上对供试居群进行了聚类分析.测定结果表明:各居群的果实精油含量和柠檬醛含量差异显著,精油含量均值为3.60%,变异系数(CV)为1.54%~10.46%;柠檬醛含量均值为3.52%,CV为24.78% ~40.54%;云南景东居群精油含量最高(4.56%)、江西分宜居群最低(3.14%);福建永安居群柠檬醛含量最高(7.01%)、贵州毕节居群最低(1.85%),且柠檬醛含量的表型分化系数为57.87%,说明居群间柠檬醛含量的变异幅度大于精油含量,且居群间柠檬醛含量的变异程度大于居群内.相关性分析结果显示:山苍子果实精油含量与经度和7月均温呈极显著负相关,与年降雨量呈显著负相关,与海拔呈极显著正相关;柠檬醛含量与经度和年降雨量分别呈显著和极显著正相关,说明精油含量随经度增大而降低,且受环境水分和温度变化的影响较大;而柠檬醛含量随经度增大而提高,并明显受生境中水分条件的调节.聚类分析结果表明:在欧氏距离15处,供试的10个山苍子居群主要分成3类,根据地理位置大体可划分为西南部和东南部2个种质类型,其中福建永安居群较为特殊.研究结果表明:不同居群山苍子果实精油含量和柠檬醛含量差异与遗传特性、地理分布和生境气候条件均有一定的相关性.  相似文献   

12.
山鸡椒挥发油成分分析及其抗真菌保鲜作用的研究   总被引:15,自引:0,他引:15  
本文对湖南山鸡椒(Litsea cubeba)挥发油(山苍子油)抑制植物病原真菌Fusarium oxysporum,Helminthosporium sp.Stemphyllium sp.的效能及其抑制真菌的有效成分进行了研究,实验结果表明,所用山鸡椒挥发油具有很强的抑制植物病原真菌生长的能力,并有明显的保鲜作用,其主要生物活性成份为柠檬醛。  相似文献   

13.
Litsea cubeba (Lour.) Pers. is a kind of medicinal plantin China. The first report about the antibacterial and anti-phlogistic function of Litsea cubeba (Lour.) Pers. and itsoil appeared in the Zhong Yao Da Ci Dian [1]. Since 1980s,many studies showed that Litsea cubeba oil had wideantibacterial and antifungal activity [2–4]. The antibioticfunctions of Litsea cubeba oil are attributable mainly tocitral [5–7], which amounts to 60%–80% of the essentialoil [8]. Pattnaik [9] reported that…  相似文献   

14.
In this study, the fruit essential oil of Cinnamomum insularimontanum was prepared by using water distillation. Followed by GC-MS analysis, the composition of fruit essential oil was characterized. The main constituents of essential oil were alpha-pinene (9.45%), camphene (1.70%), beta-pinene (4.30%), limonene (1.76%), citronellal (24.64%), citronellol (16.78%), and citral (35.89%). According to the results obtained from nitric oxide (NO) inhibitory activity assay, crude essential oil and its dominant compound (citral) presented the significant NO production inhibitory activity, IC(50) of crude essential oil and citral were 18.68 and 13.18mug/mL, respectively. Moreover, based on the results obtained from the protein expression assay, the expression of IKK, iNOS, and nuclear NF-kappaB was decreased and IkappaBalpha was increased in dose-dependent manners, it proved that the anti-inflammatory mechanism of citral was blocked via the NF-kappaB pathway, but it could not efficiently suppress the activity on COX-2. In addition, citral exhibited a potent anti-inflammatory activity in the assay of croton oil-induced mice ear edema, when the dosage was 0.1 and 0.3mg per ear, the inflammation would reduce to 22% and 83%, respectively. The results presented that the fruit essential oil of C. insularimontanum and/or citral may have a great potential to develop the anti-inflammatory medicine in the future.  相似文献   

15.
杨叶木姜子果实的挥发油成分分析   总被引:6,自引:0,他引:6  
本文采用GC-MS联用技术确定了杨叶木姜子Litsea populifolia(Hemsl.)Gamble果实挥发油的21种化学成分及相对含量,主要有:β-柠檬醛(β-citral)、α-柠檬醛(α-citral)、柠檬烯(limonene)、l,8-桉叶素(1,8-cinceole)、橙花醇(nerol)等,并与同属植物山鸡椒Litsea cubeba(Lour.)Pers的化学成分做了比较。  相似文献   

16.
元宝草挥发油化学成分的研究   总被引:7,自引:0,他引:7  
目的:首次研究元宝草叶及果实挥发油的成分,并比较它们的化学成分。方法:元宝草的叶和果实中的挥发油分别经同时蒸馏萃取的挥发油提取器提取(水蒸气蒸馏、乙酸乙酯萃取),通过气相色谱-质谱分析,结合计算机检索技术对其化学成分进行分离和鉴定,应用色谱峰面积归一化法测定各成分的相对百分含量。结果:从元宝草叶及果实中分别鉴定了30和44种成分,各占挥发油的总量的85.13%和63.26%。叶与果实挥发油的化学成分相差很大。  相似文献   

17.
Litsea cubeba oil is extracted from the fresh fruits of Litsea cubeba by distillation. In this study, its chemical constituents, antibacterial activity, kinetics and effects against Escherichia coli were studied. Its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both 0.125% (v/v) by toxic food method. Moreover, the antibacterial kinetic curves indicated 0.0625% (v/v) of litsea cubeba oil was able to prolong the growth lag phase of E. coli cells to approximate 12 hours while 0.125% (v/v) of litsea cubeba oil was able to kill the cells completely. Furthermore, transmission electron microscope (TEM) observation showed most E. coli cells treated with 0.125% (v/v) of litsea cubeba oil were killed or destroyed severely within 2 hours. The litsea cubeba oil might penetrate and destroy the outer and inner membrane of E. coli cells. Thus many holes and gaps were observed on the damaged cells, which led to their death eventually. The antibacterial effects of litsea cubeba oil mainly attributed to the presence of aldehydes, which accounted for approximately 70% in its whole components analyzed by GC/MS. Based on the antimicrobial properties, litsea cubeba oil would have a broad application in the antimicrobial industry.  相似文献   

18.
The composition of the essential oils obtained by hydrodistillation of different parts of Litsea cubeba, including roots, stems, leaves, alabastra (flower buds), flowers, and fruits, were investigated by GC (RI) and GC/MS. The antimicrobial activity of the oils was assessed with disc diffusion and microbroth dilution assays. The results showed large variations in the composition among the different oils. The major components in the oils from roots and fruits, from stems, leaves, and alabastra, and from flowers were citral B (neral), β‐phellandrene, and β‐terpinene, respectively. The inhibition zone (DD) and MIC values for the bacterial strains tested, which were all sensitive to the essential oil of L. cubeba, were in the range of 10.1–35.0 mm and 100–1000 μg/ml, respectively. Hence, the oils of the various parts showed moderate activity against the tested bacteria. This investigation showed that the antibacterial activity of L. cubeba was attributed to the essential oils, thus they can be a potential medicinal resource.  相似文献   

19.
Lemongrass is a widely used herb as a food flavoring, as a perfume, and for its analgesic and anti-inflammatory purposes; however, the molecular mechanisms of these effects have not been elucidated. Previously, we identified carvacrol from the essential oil of thyme as a suppressor of cyclooxygenase (COX)-2, a key enzyme for prostaglandin synthesis, and also an activator of peroxisome proliferator-activated receptor (PPAR), a molecular target for “lifestyle-related” diseases. In this study, we evaluated the essential oil of lemongrass using our established assays for COX-2 and PPARs. We found that COX-2 promoter activity was suppressed by lemongrass oil in cell-based transfection assays, and we identified citral as a major component in the suppression of COX-2 expression and as an activator of PPARα and γ. PPARγ-dependent suppression of COX-2 promoter activity was observed in response to citral treatment. In human macrophage-like U937 cells, citral suppressed both LPS-induced COX-2 mRNA and protein expression, dose-dependently. Moreover, citral induced the mRNA expression of the PPARα-responsive carnitine palmitoyltransferase 1 gene and the PPARγ-responsive fatty acid binding protein 4 gene, suggesting that citral activates PPARα and γ, and regulates COX-2 expression. These results are important for understanding the anti-inflammatory and anti-lifestyle-related disease properties of lemongrass.  相似文献   

20.
南方红豆杉叶精油化学成分的研究   总被引:1,自引:0,他引:1  
采用水蒸汽蒸馏法提取南方红豆杉叶的精油,通过色谱-质谱-计算机联用技术分析了精油的化学成分。从中初步鉴定出26个化合物,占精油总量的96%,主要成分是:棕榈酸(35.66%),9-十六碳烯酸9-十六碳稀酯(11.28%),3-辛醇(4.47%),1-苯-1,2-丙二酮(4.3%),N-苯基-1-萘胺(3.57%),1,2-苯二羧酸(2-甲基丙基)二酯(3.57%),6,10-二甲基-5,9-十一双  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号