首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The moss Physcomitrella patens is an attractive model system for plant biology and functional genome analysis. It shares many biological features with higher plants but has the unique advantage of an efficient homologous recombination system for its nuclear DNA. This allows precise genetic manipulations and targeted knockouts to study gene function, an approach that due to the very low frequency of targeted recombination events is not routinely possible in any higher plant.

Results

As an important prerequisite for a large-scale gene/function correlation study in this plant, we are establishing a collection of Physcomitrella patens transformants with insertion mutations in most expressed genes. A low-redundancy moss cDNA library was mutagenised in E. coli using a derivative of the transposon Tn1000. The resulting gene-disruption library was then used to transform Physcomitrella. Homologous recombination of the mutagenised cDNA with genomic coding sequences is expected to target insertion events preferentially to expressed genes. An immediate phenotypic analysis of transformants is made possible by the predominance of the haploid gametophytic state in the life cycle of the moss. Among the first 16,203 transformants analysed so far, we observed 2636 plants ( = 16.2%) that differed from the wild-type in a variety of developmental, morphological and physiological characteristics.

Conclusions

The high proportion of phenotypic deviations and the wide range of abnormalities observed among the transformants suggests that mutagenesis by gene-disruption library transformation is a useful strategy to establish a highly diverse population of Physcomitrella patens mutants for functional genome analysis.  相似文献   

2.
Phytochromes are plant photoreceptors important for development and adaptation to the environment. Phytochrome A (PHYA) is essential for the far-red (FR) high-irradiance responses (HIRs), which are of particular ecological relevance as they enable plants to establish under shade conditions. PHYA and HIRs have been considered unique to seed plants because the divergence of seed plants and cryptogams (e.g., ferns and mosses) preceded the evolution of PHYA. Seed plant phytochromes translocate into the nucleus and regulate gene expression. By contrast, there has been little evidence of a nuclear localization and function of cryptogam phytochromes. Here, we identified responses to FR light in cryptogams, which are highly reminiscent of PHYA signaling in seed plants. In the moss Physcomitrella patens and the fern Adiantum capillus-veneris, phytochromes accumulate in the nucleus in response to light. Although P. patens phytochromes evolved independently of PHYA, we have found that one clade of P. patens phytochromes exhibits the molecular properties of PHYA. We suggest that HIR-like responses had evolved in the last common ancestor of modern seed plants and cryptogams and that HIR signaling is more ancient than PHYA. Thus, other phytochromes in seed plants may have lost the capacity to mediate HIRs during evolution, rather than that PHYA acquired it.  相似文献   

3.

Background

The physical organization and chromosomal localization of genes within genomes is known to play an important role in their function. Most genes arise by duplication and move along the genome by random shuffling of DNA segments. Higher order structuring of the genome occurs in eukaryotes, where groups of physically linked genes are co-expressed. However, the contribution of gene duplication to gene order has not been analyzed in detail, as it is believed that co-expression due to recent duplicates would obscure other domains of co-expression.

Results

We have catalogued ordered duplicated genes in Drosophila melanogaster, and found that one in five of all genes is organized as tandem arrays. Furthermore, among arrays that have been spatially conserved over longer periods than would be expected on the basis of random shuffling, a disproportionate number contain genes encoding developmental regulators. Using in situ gene expression data for more than half of the Drosophila genome, we find that genes in these conserved clusters are co-expressed to a much higher extent than other duplicated genes.

Conclusions

These results reveal the existence of functional constraints in insects that retain copies of genes encoding developmental and regulatory proteins as neighbors, allowing their co-expression. This co-expression may be the result of shared cis-regulatory elements or a shared need for a specific chromatin structure. Our results highlight the association between genome architecture and the gene regulatory networks involved in the construction of the body plan.  相似文献   

4.
5.

Key message

In this study, we identified eight DNA MTase genes in maize and the diversity of expression patterns of them was presented by EST mining, microarray and semi-quantitative expression profile analyses.

Abstract

DNA methylation plays a pivotal role in promoting genomic stability through diverse biological processes including regulation of gene expression during development and chromatin organization. Although this important biological process is mainly regulated by several conserved Cytosine-5 DNA methyltransferases encoded by a smaller multigene family in plants, investigation of the plant C5-MTase-encoding gene family will serve to elucidate the epigenetic mechanism diversity in plants. Recently, genome-wide identification and evolutionary analyses of the C5-MTase-encoding gene family have been characterized in multiple plant species including Arabidopsis, rice, carrot and wheat. However, little is known regarding the C5-MTase-encoding genes in the entire maize genome. Here, genome-wide identification and expression profile analyses of maize C5-MTase-encoding genes (ZmMETs) were performed from the latest version of the maize (B73) genome. Phylogenetic analysis indicated that the orthologs from the three species (maize, Arabidopsis and rice) were categorized into four classes. Chromosomal location of these genes revealed that they are unevenly distributed on 6 of all 10 chromosomes with three chromosomal/segmental duplication events, suggesting that gene duplication played a key role in expansion of the maize C5-MTase-encoding gene family. Furthermore, EST expression data mining, microarray data and semi-quantitative expression profile analyses detected in the leaves by two different abiotic stress treatments have demonstrated that these genes had temporal and spatial expression pattern and exhibited different expression levels in stress treatments, suggesting that functional diversification of ZmMET genes family. Overall, our study will serve to present signification insights to explore the plant C5-MTase-encoding gene expression and function and also be beneficial for future experimental research to further unravel the mechanisms of epigenetic regulation in plants.  相似文献   

6.

Key message

The Physcomitrella pseudochromosomal genome assembly revealed previously invisible synteny enabling realisation of the full potential of shared synteny as a tool for probing evolution of this plant’s MADS-box gene family.

Abstract

Assembly of the sequenced genome of Physcomitrella patens into 27 mega-scaffolds (pseudochromosomes) has confirmed the major predictions of our earlier model of expansion of the MADS-box gene family in the Physcomitrella lineage. Additionally, microsynteny has been conserved in the immediate vicinity of some recent duplicates of MADS-box genes. However, comparison of non-syntenic MIKC MADS-box genes and neighbouring genes indicates that chromosomal rearrangements and/or sequence degeneration have destroyed shared synteny over longer distances (macrosynteny) around MADS-box genes despite subsets comprising two or three MIKC genes having remained syntenic. In contrast, half of the type I MADS-box genes have been transposed creating new syntenic relations with MIKC genes. This implies that conservation of ancient ancestral synteny of MIKC genes and of more recently acquired synteny of type I and MIKC genes may be selectively advantageous. Our revised model predicts the birth rate of MIKC genes in Physcomitrella is higher than that of type I genes. However, this difference is attributable to an early tandem duplication and an early segmental duplication of MIKC genes prior to the two polyploidisations that account for most of the expansion of the MADS-box gene family in Physcomitrella. Furthermore, this early segmental duplication spawned two chromosomal lineages: one with a MIKC C gene, belonging to the PPM2 clade, in close proximity to one or a pair of MIKC* genes and another with a MIKC C gene, belonging to the PpMADS-S clade, characterised by greater separation from syntenic MIKC* genes. Our model has evolutionary implications for the Physcomitrella karyotype.
  相似文献   

7.
8.

Background and Aims

Callose involvement in spore development is a plesiomorphic feature of land plants. Correlated light, fluorescence and immuno-electron microscopy was conducted on the developing spores of Physcomitrella patens to probe for callose. Using a bioinformatic approach, the callose synthase (PpCalS) genes were annotated and PpCalS and AtCalS gene families compared, testing the hypothesis that an exine development orthologue is present in P. patens based on deduced polypeptide similarity with AtCalS5, a known exine development gene.

Methods

Spores were stained with aniline blue fluorescent dye. Capsules were prepared for immuno-light and immuno-electron microscopy by gold labelling callose epitopes with monoclonal antibody. BLAST searches were conducted using the AtCalS5 sequence as a query against the P. patens genome. Phylogenomic analysis of the CalS gene family was conducted using PAUP (v.4·1b10).

Key Results

Callose is briefly present in the aperture of developing P. patens spores. The PpCalS gene family consists of 12 copies that fall into three distinct clades with AtCalS genes. PpCalS5 is an orthologue to AtCalS5 with highly conserved domains and 64 % similarity of their deduced polypeptides.

Conclusions

This is the first study to identify the presence of callose in moss spores. AtCalS5 was previously shown to be involved in pollen exine development, thus making PpCalS5 a suspect gene involved in moss spore exine development.Key words: Bryophyte, callose, callose synthase, exine development, moss, Physcomitrella patens, spores, sporogenesis  相似文献   

9.
10.
Chloroplasts are believed to be descendants of ancestral cyanobacteria that had peptidoglycan layer between the outer and the inner membranes. Historically, the glaucophyte Cyanophora paradoxa and the rhizopod Paulinella chromatophora were believed to harbor symbiotic cyanobacteria having peptidoglycan, which were conventionally named “cyanelles”. In addition, the complete set of genes involved in the synthesis of peptidoglycan has been found in the moss Physcomitrella patens and some plants and algae. The presence of peptidoglycan-like structures was demonstrated by a new metabolic labeling technique in P. patens. However, many green algae and all known red algae lack peptidoglycan-related genes. That is the reason why we questioned the origin of peptidoglycan-synthesizing enzymes in the chloroplasts of the green algae and plants. We performed phylogenetic analysis of ten enzymes involved in the synthesis of peptidoglycan exploiting the Gclust homolog clusters and additional genomic data. As expected, all the identified genes encoded in the chromatophore genome of P. chromatophora were closely related to cyanobacterial homologs. In the green algae and plants, only two genes, murA and mraY, were found to be closely related to cyanobacterial homologs. The origins of all other genes were diverse. Unfortunately, the origins of C. paradoxa genes were not clearly determined because of incompleteness of published genomic data. We discuss on the probable evolutionary scenarios to explain the mostly non-cyanobacterial origins of the biosynthetic enzymes of chloroplast peptidoglycan: A plausible one includes extensive multiple horizontal gene transfers during the early evolution of Viridiplantae.  相似文献   

11.

Background

The metzincins are a large gene superfamily of proteases characterized by the presence of a zinc protease domain, and include the ADAM, ADAMTS, BMP1/TLL, meprin and MMP genes. Metzincins are involved in the proteolysis of a wide variety of proteins, including those of the extracellular matrix. The metzincin gene superfamily comprises eighty proteins in the human genome and ninety-three in the mouse. When and how the level of complexity apparent in the vertebrate metzincin gene superfamily arose has not been determined in detail. Here we present a comprehensive analysis of vertebrate metzincins using genes from both Ciona intestinalis and Danio rerio to provide new insights into the complex evolution of this gene superfamily.

Results

We have identified 19 metzincin genes in the ciona genome and 83 in the zebrafish genome. Phylogenetic analyses reveal that the expansion of the metzincin gene superfamily in vertebrates has occurred predominantly by the simple duplication of pre-existing genes rather than by the appearance and subsequent expansion of new metzincin subtypes (the only example of which is the meprin gene family). Despite the number of zebrafish metzincin genes being relatively similar to that of tetrapods (e.g. man and mouse), the pattern of gene retention and loss within these lineages is markedly different. In addition, we have studied the evolution of the related TIMP gene family and identify a single ciona and four zebrafish TIMP genes.

Conclusion

The complexity seen in the vertebrate metzincin gene families was mainly acquired during vertebrate evolution. The metzincin gene repertoire in protostomes and invertebrate deuterostomes has remained relatively stable. The expanded metzincin gene repertoire of extant tetrapods, such as man, has resulted largely from duplication events associated with early vertebrate evolution, prior to the sarcopterygian-actinopterygian split. The teleost repertoire of metzincin genes in part parallels that of tetrapods but has been significantly modified, perhaps as a consequence of a teleost-specific duplication event.  相似文献   

12.

Background

Seed storage proteins are a major source of dietary protein, and the content of such proteins determines both the quantity and quality of crop yield. Significantly, examination of the protein content in the seeds of crop plants shows a distinct difference between monocots and dicots. Thus, it is expected that there are different evolutionary patterns in the genes underlying protein synthesis in the seeds of these two groups of plants.

Results

Gene duplication, evolutionary rate and positive selection of a major gene family of seed storage proteins (the 11S globulin genes), were compared in dicots and monocots. The results, obtained from five species in each group, show more gene duplications, a higher evolutionary rate and positive selections of this gene family in dicots, which are rich in 11S globulins, but not in the monocots.

Conclusion

Our findings provide evidence to support the suggestion that gene duplication and an accelerated evolutionary rate may be associated with higher protein synthesis in dicots as compared to monocots.  相似文献   

13.

Background

The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily.

Methodology

In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family.

Conclusions

Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.  相似文献   

14.
15.

Key message

Mosses have high contents of polyunsaturated fatty acids. Tissue-specific differences in fatty acid contents and fatty acid desaturase (FADS)-encoding gene expression exist. The arachidonic acid-synthesizing FADS operate in the ER.

Abstract

Polyunsaturated fatty acids (PUFAs) are important cellular compounds with manifold biological functions. Many PUFAs are essential for the human diet and beneficial for human health. In this study, we report on the high amounts of very long-chain (vl) PUFAs (≥C20) such as arachidonic acid (AA) in seven moss species. These species were established in axenic in vitro culture, as a prerequisite for comparative metabolic studies under highly standardized laboratory conditions. In the model organism Physcomitrella patens, tissue-specific differences in the fatty acid compositions between the filamentous protonema and the leafy gametophores were observed. These metabolic differences correspond with differential gene expression of fatty acid desaturase (FADS)-encoding genes in both developmental stages, as determined via microarray analyses. Depending on the developmental stage and the species, AA amounts for 6–31 %, respectively, of the total fatty acids. Subcellular localization of the corresponding FADS revealed the endoplasmic reticulum as the cellular compartment for AA synthesis. Our results show that vlPUFAs are highly abundant metabolites in mosses. Standardized cultivation techniques using photobioreactors along with the availability of the P. patens genome sequence and the high rate of homologous recombination are the basis for targeted metabolic engineering in moss. The potential of producing vlPUFAs of interest from mosses will be highlighted as a promising area in plant biotechnology.  相似文献   

16.

Key message

We developed an efficient Agrobacterium -mediated transformation method using an Ac/Ds transposon tagging construct for F. vesca and high throughput paromomycin spray assay to identify its transformants for strawberry functional genomics.

Abstract

Genomic resources for Rosaceae species are now readily available, including the Fragaria vesca genome, EST sequences, markers, linkage maps, and physical maps. The Rosaceae Genomic Executive Committee has promoted strawberry as a translational genomics model due to its unique biological features and transformability for fruit trait improvement. Our overall research goal is to use functional genomic and metabolic approaches to pursue high throughput gene discovery in the diploid woodland strawberry. F. vesca offers several advantages of a fleshy fruit typical of most fruit crops, short life cycle (seed to seed in 12–16 weeks), small genome size (206 Mbb/C), small plant size, self-compatibility, and many seeds per plant. We have developed an efficient Agrobacterium tumefaciens-mediated strawberry transformation method using kanamycin selection, and high throughput paromomycin spray assay to efficiently identify transgenic strawberry plants. Using our kanamycin transformation method, we were able to produce up to 98 independent kanamycin resistant insertional mutant lines using a T-DNA construct carrying an Ac/Ds transposon Launchpad system from a single transformation experiment involving inoculation of 22 leaf explants of F. vesca accession 551572 within approx. 11 weeks (from inoculation to soil). Transgenic plants with 1–2 copies of a transgene were confirmed by Southern blot analysis. Using our paromomycin spray assay, transgenic F. vesca plants were rapidly identified within 10 days after spraying.  相似文献   

17.

Background

Although the overwhelming majority of genes found in angiosperms are members of gene families, and both gene- and genome-duplication are pervasive forces in plant genomes, some genes are sufficiently distinct from all other genes in a genome that they can be operationally defined as 'single copy'. Using the gene clustering algorithm MCL-tribe, we have identified a set of 959 single copy genes that are shared single copy genes in the genomes of Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa. To characterize these genes, we have performed a number of analyses examining GO annotations, coding sequence length, number of exons, number of domains, presence in distant lineages, such as Selaginella and Physcomitrella, and phylogenetic analysis to estimate copy number in other seed plants and to demonstrate their phylogenetic utility. We then provide examples of how these genes may be used in phylogenetic analyses to reconstruct organismal history, both by using extant coverage in EST databases for seed plants and de novo amplification via RT-PCR in the family Brassicaceae.

Results

There are 959 single copy nuclear genes shared in Arabidopsis, Populus, Vitis and Oryza ["APVO SSC genes"]. The majority of these genes are also present in the Selaginella and Physcomitrella genomes. Public EST sets for 197 species suggest that most of these genes are present across a diverse collection of seed plants, and appear to exist as single or very low copy genes, though exceptions are seen in recently polyploid taxa and in lineages where there is significant evidence for a shared large-scale duplication event. Genes encoding proteins localized in organelles are more commonly single copy than expected by chance, but the evolutionary forces responsible for this bias are unknown. Regardless of the evolutionary mechanisms responsible for the large number of shared single copy genes in diverse flowering plant lineages, these genes are valuable for phylogenetic and comparative analyses. Eighteen of the APVO SSC single copy genes were amplified in the Brassicaceae using RT-PCR and directly sequenced. Alignments of these sequences provide improved resolution of Brassicaceae phylogeny compared to recent studies using plastid and ITS sequences. An analysis of sequences from 13 APVO SSC genes from 69 species of seed plants, derived mainly from public EST databases, yielded a phylogeny that was largely congruent with prior hypotheses based on multiple plastid sequences. Whereas single gene phylogenies that rely on EST sequences have limited bootstrap support as the result of limited sequence information, concatenated alignments result in phylogenetic trees with strong bootstrap support for already established relationships. Overall, these single copy nuclear genes are promising markers for phylogenetics, and contain a greater proportion of phylogenetically-informative sites than commonly used protein-coding sequences from the plastid or mitochondrial genomes.

Conclusions

Putatively orthologous, shared single copy nuclear genes provide a vast source of new evidence for plant phylogenetics, genome mapping, and other applications, as well as a substantial class of genes for which functional characterization is needed. Preliminary evidence indicates that many of the shared single copy nuclear genes identified in this study may be well suited as markers for addressing phylogenetic hypotheses at a variety of taxonomic levels.  相似文献   

18.
19.
Enzymes of the chalcone synthase (CHS) family catalyze the generation of multiple secondary metabolites in fungi, plants, and bacteria. These metabolites have played key roles in antimicrobial activity, UV protection, flower pigmentation, and pollen fertility during the evolutionary process of land plants. We performed a genome-wide investigation about CHS genes in rice (Oryza sativa). The phylogenetic relationships, gene structures, chromosomal locations, and functional predictions of the family members were examined. Twenty-seven CHS family genes (OsCHS0127) were identified in the rice genome and were found to cluster into six classes according to their phylogenetic relationships. The 27 OsCHS genes were unevenly distributed on six chromosomes, and 17 genes were found in the genome duplication zones with two segmental duplication and five tandem duplication events that may have played key roles in the expansion of the rice CHS gene family. In addition, the OsCHS genes exhibited diverse expression patterns under salicylic acid treatment. Our results revealed that the OsCHS genes exhibit both diversity and conservation in many aspects, which will contribute to further studies of the function of the rice CHS gene family and provide a reference for investigating this family in other plants.  相似文献   

20.

Background

The lycophytes are an ancient lineage of vascular plants that diverged from the seed plant lineage about 400 Myr ago. Although the lycophytes occupy an important phylogenetic position for understanding the evolution of plants and their genomes, no genomic resources exist for this group of plants.

Results

Here we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from the lycophyte Selaginella moellendorffii. Based on cell flow cytometry, this species has the smallest genome size among the different lycophytes tested, including Huperzia lucidula, Diphaiastrum digita, Isoetes engelmanii and S. kraussiana. The arrayed BAC library consists of 9126 clones; the average insert size is estimated to be 122 kb. Inserts of chloroplast origin account for 2.3% of the clones. The BAC library contains an estimated ten genome-equivalents based on DNA hybridizations using five single-copy and two duplicated S. moellendorffii genes as probes.

Conclusion

The S. moellenforffii BAC library, the first to be constructed from a lycophyte, will be useful to the scientific community as a resource for comparative plant genomics and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号