首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
The plant hormone auxin plays a critical role in plant development. Central to its function is its distribution in plant tissues, which is, in turn, largely shaped by intercellular polar transport processes. Auxin transport relies on diffusive uptake as well as carrier-mediated transport via influx and efflux carriers. Mathematical models have been used to both refine our theoretical understanding of these processes and to test new hypotheses regarding the localization of efflux carriers to understand auxin patterning at the tissue level. Here we review models for auxin transport and how they have been applied to patterning processes, including the elaboration of plant vasculature and primordium positioning. Second, we investigate the possible role of auxin influx carriers such as AUX1 in patterning auxin in the shoot meristem. We find that AUX1 and its relatives are likely to play a crucial role in maintaining high auxin levels in the meristem epidermis. We also show that auxin influx carriers may play an important role in stabilizing auxin distribution patterns generated by auxin-gradient type models for phyllotaxis.  相似文献   

2.
Auxin: A major regulator of organogenesis   总被引:2,自引:0,他引:2  
Plant development is characterized by the continuous initiation of tissues and organs. The meristems, which are small stem cell populations, are involved in this process. The shoot apical meristem produces lateral organs at its flanks and generates the growing stem. These lateral organs are arranged in a stereotyped pattern called phyllotaxis. Organ initiation in the peripheral zone of the meristem involves accumulation of the plant hormone auxin. Auxin is transported in a polar way by influx and efflux carriers located at cell membranes. Polar localization of the PIN1 efflux carrier in meristematic cells generates auxin concentration gradients and PIN1 localization depends, in turn, on auxin gradients: this feedback loop generates a dynamic auxin distribution which controls phyllotaxis. Furthermore, PIN-dependent local auxin gradients represent a common module for organ initiation, in the shoot and in the root.  相似文献   

3.
生长素对拟南芥叶片发育调控的研究进展   总被引:5,自引:0,他引:5  
叶片(包括子叶)是茎端分生组织产生的第一类侧生器官,在植物发育中具有重要地位。早期叶片发育包括三个主要过程:叶原基的起始,叶片腹背性的建立和叶片的延展。大量证据表明叶片发育受到体内遗传机制和体外环境因子的双重调节。植物激素,尤其是生长素在协调体内外调节机制中起着不可或缺的作用。生长素的稳态调控、极性运输和信号转导影响叶片发育的全过程。本文着重介绍生长素在叶片生长发育和形态建成中的调控作用,试图了解复杂叶片发育调控网络。  相似文献   

4.
生长素调控植物株型形成的研究进展   总被引:16,自引:1,他引:15  
高等植物通过调节顶端分生组织和侧生分生组织的活性建立地上株型系统,分生组织的活性受环境信号、发育阶段和遗传因素的综合调控,植物激素参与这些信号的整合。顶端优势是植物分枝调控的核心问题,而生长素对顶端优势的形成和维持发挥关键作用。本文综述了近几年与植物地上部分株型形成相关的生长素合成代谢、极性运输及信号转导领域的研究进展,并提出了展望。  相似文献   

5.
Leaf adaxial–abaxial polarity refers to the two leaf faces, which have different types of cells performing distinct biological functions. In 1951, Ian Sussex reported that when an incipient leaf primordium was surgically isolated by an incision across the vegetative shoot apical meristem (SAM), a radialized structure without an adaxial domain would form. This led to the proposal that a signal, now called the Sussex signal, is transported from the SAM to emerging primordia to direct leaf adaxial–abaxial patterning. It was recently proposed that instead of the Sussex signal, polar transport of the plant hormone auxin is critical in leaf polarity formation. However, how auxin polar transport functions in the process is unknown. Through live imaging, we established a profile of auxin polar transport in and around young leaf primordia. Here we show that auxin polar transport in lateral regions of an incipient primordium forms auxin convergence points. We demonstrated that blocking auxin polar transport in the lateral regions of the incipient primordium by incisions abolished the auxin convergence points and caused abaxialized leaves to form. The lateral incisions also blocked the formation of leaf middle domain and margins and disrupted expression of the middle domain/margin‐associated marker gene WUSCHEL‐RELATED HOMEOBOX 1 (SlWOX1). Based on these results we propose that the auxin convergence points are required for the formation of leaf middle domain and margins, and the functional middle domain and margins ensure leaf adaxial–abaxial polarity. How middle domain and margins function in the process is discussed.  相似文献   

6.
We used an anti-indole acetic acid (IAA or auxin) monoclonal antibody-based immunocytochemical procedure to monitor IAA level in Arabidopsis tissues. Using immunocytochemistry and the IAA-driven beta-glucuronidase (GUS) activity of Aux/IAA promoter::GUS constructs to detect IAA distribution, we investigated the role of polar auxin transport in vascular differentiation during leaf development in Arabidopsis. We found that shoot apical cells contain high levels of IAA and that IAA decreases as leaf primordia expand. However, seedlings grown in the presence of IAA transport inhibitors showed very low IAA signal in the shoot apical meristem (SAM) and the youngest pair of leaf primordia. Older leaf primordia accumulate IAA in the leaf tip in the presence or absence of IAA transport inhibition. We propose that the IAA in the SAM and the youngest pair of leaf primordia is transported from outside sources, perhaps the cotyledons, which accumulate more IAA in the presence than in the absence of transport inhibition. The temporal and spatial pattern of IAA localization in the shoot apex indicates a change in IAA source during leaf ontogeny that would influence flow direction and, consequently, the direction of vascular differentiation. The IAA production and transport pattern suggested by our results could explain the venation pattern, and the vascular hypertrophy caused by IAA transport inhibition. An outside IAA source for the SAM supports the notion that IAA transport and procambium differentiation dictate phyllotaxy and organogenesis.  相似文献   

7.
NiDA WangLJ 《Cell research》2001,11(4):273-278
INTRODUCTIONAuxin plays an important role in regu1ating celldivision, e1ongation and differentiatiou, vascular tis-sue fOrmation[1], pollen deve1opment[2] and 1eafyhead fOrmation[3]. Adrin polar transport is be-1ieved to invohe in a variety of important growthand developmenial processes, including the patternfOrmation of eInbryO, leaf morphogenesis and theroot gravity response[4--8]. Auxin po1ar transportinhibitor has been proved essential illterference ofataln transport leading to patte…  相似文献   

8.
Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.  相似文献   

9.
10.
Auxin is a plant growth regulator involved in diverse fundamental developmental responses. Much is now known about auxin transport, via influx and efflux carriers, and about auxin perception and its role in gene regulation. Many developmental processes are dependent on peaks of auxin concentration and, to date, attention has been directed at the role of polar auxin transport in generating and maintaining auxin gradients. However, surprisingly little attention has focussed on the role and significance of auxin biosynthesis, which should be expected to contribute to active auxin pools. Recent reports on the function of the YUCCA flavin monooxygenases and a tryptophan aminotransferase in Arabidopsis have caused us to look again at the importance of local biosynthesis in developmental processes. Many alternative and redundant pathways of auxin synthesis exist in many plants and it is emerging that they may function in response to environmental cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号