首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Inbreeding depression is one of the major selective forces driving the evolution of mating systems. Previous theories predict that long-lived plants will show a negative correlation between inbreeding depression and the level of inbreeding (as determined by an inbreeding coefficient) at maturity, but the extent of this correlation may vary among life stages because of variation in the genetic basis for inbreeding depression at different stages. To test this prediction, I used electrophoretic allozyme analysis and pollination experiments to examine the fixation index (F is) at maturity and inbreeding depression in the early and late life stages of two populations with different outcrossing rates of a highly self-fertilizing tree, Magnolia obovata. The magnitude of inbreeding depression for early survival (δ e) in an outcrossing population (t m = 0.51; F is = −0.015) was higher (δ e = 0.97) than that in an inbreeding population (t m = 0.18; F is = 0.15; δ e = 0.38). From these results, I estimated that both populations exhibited high inbreeding depression for late survival (δ l) (0.94 in the outcrossing population and 0.93 in the inbreeding one) and lifetime survival (δ t) (0.99 and 0.96, respectively). My results and previously published data demonstrate the predicted relationship between inbreeding depression and the level of inbreeding for early survival, but not for late survival. This suggests that there is a differential genetic basis for inbreeding depression at different life stages. The inbreeding depression for late survival appears to play a central role in the maintenance of reproductive traits that promote outcrossing in M. obovata.  相似文献   

2.
 Isozyme analysis of seed samples derived from natural and managed populations of the tropical pine Pinus caribaea vars ‘bahamensis’ and ‘caribaea’ was used to assess population genetic structure in its native range and to detect changes occurring during early domestication of the species. Baseline data from natural populations of the two varieties showed that populations sampled as seed are characterized by high gene diversity (mean He=0.26) and a low level of inbreeding ( mean Fis=0.15). A UPGMA tree of genetic relatedness among populations indicates that the two varieties represent distinct evolutionary units. Within each variety there is significant differentiation among populations, and this is greater for the more fragmented populations of var ‘bahamensis’ (Fst=0.08) than for var ‘caribaea’ (Fst=0.02). Seed from a seed orchard population of var ‘caribaea’ established within its natural range showed no change in genetic diversity but did show a reduced inbreeding coefficient (Fis=0.09) compared with its progenitor populations, suggesting a decrease in selfing and/or biparental inbreeding. A bulked seed sample from an exotic plantation of var ‘bahamensis’ in Australia displayed a large increase in the inbreeding coefficient (Fis=0.324) compared with that found in natural populations, possibly due to elevated self-fertilization. Finally, a bulked seed sample from an exotic plantation population of var ‘caribaea’ from China showed enhanced genetic diversity, an increase in the inbreeding coefficient and more linkage disequilibrium than its presumed progenitor populations. It was also genetically divergent from them. RFLP analysis of chloroplast DNA variation in the Chinese sample suggested that seeds of the related taxa P. elliottii and P. taeda, or seeds derived from hybridization with these taxa growing in the seed production area, had been included in the seed crop during harvesting. We conclude that monitoring of appropriate genetic markers may be an effective means of identifying potentially deleterious genetic changes occurring during forest tree domestication. Received: 10 August 1998 / Accepted: 8 September 1998  相似文献   

3.
Genome duplication resulting in polyploidy can have significant consequences for the evolution of mating systems. Most theory predicts that self‐fertilization will be selectively favored in polyploids; however, many autopolyploids are outcrossing or mixed‐mating. Here, we examine the hypothesis that the evolution of selfing is restricted in autopolyploids because the genetic cost of selfing (i.e., inbreeding depression) increases monotonically with successive generations of inbreeding. Using the herbaceous, autotetraploid plant Chamerion angustifolium, we generated populations with different inbreeding coefficients (F= 0, 0.17 and 0.36) through three consecutive generations of selfing and compared their magnitudes of inbreeding depression in a common environment. Mating system estimates for four natural populations confirmed that tetraploid selfing rates (sm= 0.25, SE = 0.02) are similar to those of diploids (sm= 0.12, SE = 0.12; F1,2= 1.34, P= 0.37) indicating that both cytotypes are predominantly outcrossing. Compared to an outbred control line, mean inbreeding depression for seed production, survival, and height (vegetative and total) in the inbred line differed among generations (inbreeding coefficients). Across all stages, inbreeding depression (relative to control) was positively related to generation (inbreeding coefficient). Although the initial costs of inbreeding in extant and newly synthesized polyploids may be low compared to diploids, the monotonic increase in inbreeding depression with repeated inbreeding may limit the extent to which selfing variants are favored.  相似文献   

4.
Ma Y  Yang M  Fan Y  Wu J  Ma Y  Xu J 《PloS one》2011,6(7):e22219

Background

Anopheles sinensis is a competent malaria vector in China. An understanding of vector population structure is important to the vector-based malaria control programs. However, there is no adequate data of A. sinensis population genetics available yet.

Methodology/Principal Findings

This study used 5 microsatellite loci to estimate population genetic diversity, genetic differentiation and demographic history of A. sinensis from 14 representative localities in China. All 5 microsatellite loci were highly polymorphic across populations, with high allelic richness and heterozygosity. Hardy–Weinberg disequilibrium was found in 12 populations associated with heterozygote deficits, which was likely caused by the presence of null allele and the Wahlund effect. Bayesian clustering analysis revealed two gene pools, grouping samples into two population clusters; one includes six and the other includes eight populations. Out of 14 samples, six samples were mixed with individuals from both gene pools, indicating the coexistence of two genetic units in the areas sampled. The overall differentiation between two genetic pools was moderate (F ST = 0.156). Pairwise differentiation between populations were lower within clusters (F ST = 0.008–0.028 in cluster I and F ST = 0.004–0.048 in cluster II) than between clusters (F ST = 0.120–0.201). A reduced gene flow (Nm = 1–1.7) was detected between clusters. No evidence of isolation by distance was detected among populations neither within nor between the two clusters. There are differences in effective population size (Ne = 14.3-infinite) across sampled populations.

Conclusions/Significance

Two genetic pools with moderate genetic differentiation were identified in the A. sinensis populations in China. The population divergence was not correlated with geographic distance or barrier in the range. Variable effective population size and other demographic effects of historical population perturbations could be the factors affecting the population differentiation. The structured populations may limit the migration of genes under pressures/selections, such as insecticides and immune genes against malaria.  相似文献   

5.
Each year, hundreds of thousands of domesticated farmed Atlantic salmon escape into the wild. In Norway, which is the world’s largest commercial producer, many native Atlantic salmon populations have experienced large numbers of escapees on the spawning grounds for the past 15–30 years. In order to study the potential genetic impact, we conducted a spatio-temporal analysis of 3049 fish from 21 populations throughout Norway, sampled in the period 1970–2010. Based upon the analysis of 22 microsatellites, individual admixture, FST and increased allelic richness revealed temporal genetic changes in six of the populations. These changes were highly significant in four of them. For example, 76% and 100% of the fish comprising the contemporary samples for the rivers Vosso and Opo were excluded from their respective historical samples at P = 0.001. Based upon several genetic parameters, including simulations, genetic drift was excluded as the primary cause of the observed genetic changes. In the remaining 15 populations, some of which had also been exposed to high numbers of escapees, clear genetic changes were not detected. Significant population genetic structuring was observed among the 21 populations in the historical (global FST = 0.038) and contemporary data sets (global FST = 0.030), although significantly reduced with time (P = 0.008). This reduction was especially distinct when looking at the six populations displaying temporal changes (global FST dropped from 0.058 to 0.039, P = 0.006). We draw two main conclusions: 1. The majority of the historical population genetic structure throughout Norway still appears to be retained, suggesting a low to modest overall success of farmed escapees in the wild; 2. Genetic introgression of farmed escapees in native salmon populations has been strongly population-dependent, and it appears to be linked with the density of the native population.  相似文献   

6.
Levels of inbreeding are highly variable in natural populations. Inbreeding can be due to random factors (like population size), limited dispersal, or active mate choice for relatives. Because of inbreeding depression, mating with kin is often avoided, although sometimes intermediately related individuals are preferred (optimal outbreeding). However, theory predicts that the advantages of mating with close kin can override the effects of inbreeding depression, but in the animal kingdom, empirical evidence for this is scarce. Here we show that both sexes of Pelvicachromis taeniatus, an African cichlid with biparental brood care, prefer mating with unfamiliar close kin over nonkin, suggesting inclusive fitness advantages for inbreeding individuals. Biparental care requires synchronous behavior among parents. Since parental care is costly, there is a conflict between parents over care, which can reduce offspring fitness. Relatedness is expected to enhance cooperation among individuals. The comparison of the parental behavior of in- and outbreeding pairs showed that related parents were more cooperative and invested more than unrelated parents. Since we found no evidence for inbreeding depression, our results suggest that in P. taeniatus, inbreeding is an advantageous strategy.  相似文献   

7.
This survey was conducted in two protected areas in Nigeria to genetically identify individual lions and to determine the genetic variation within and between the populations. We used faecal sample DNA, a non-invasive alternative to the risky and laborious task of taking samples directly from the animals, often preceded by catching and immobilization. Data collection in Yankari Game Reserve (YGR) spanned through a period of five years (2008 –2012), whereas data in Kainji Lake National Park (KLNP) was gathered for a period of three years (2009, 2010 and 2012). We identified a minimum of eight individuals (2 males, 3 females, 3 unknown) from YGR and a minimum of ten individuals (7 males, 3 females) from KLNP. The two populations were found to be genetically distinct as shown by the relatively high fixation index (FST  = 0.17) with each population exhibiting signs of inbreeding (YGR FIS  = 0.49, KLNP FIS  = 0.38). The genetic differentiation between the Yankari and Kainji lions is assumed to result from large spatial geographic distance and physical barriers reducing gene flow between these two remaining wild lion populations in Nigeria. To mitigate the probable inbreeding depression in the lion populations within Nigeria it might be important to transfer lions between parks or reserves or to reintroduce lions from the zoos back to the wild.  相似文献   

8.
The ability to self in the absence of pollinators, i.e. reproductive assurance, and the detrimental consequences of inbreeding, i.e. inbreeding depression, are central factors influencing plant mating system evolution. The purpose of this study was to quantify whether self-fertility and inbreeding depression are related to levels of inbreeding in four Cyclamen species, namely C. balearicum (mean Fis = 0.930), C. creticum (mean Fis = 0.748), C. repandum (mean Fis = 0.658) and C. hederifolium (mean Fis = 0.329). C. balearicum showed a markedly greater capacity to autonomously self-fertilize than the three other species, which may have favoured inbreeding in this species. Levels of inbreeding depression were highest in C. creticum and C. hederifolium at the fruit maturation (δ = 0.18 and 0.20, respectively) and seed number (δ = 0.32 and 0.30, respectively) stages, and for C. repandum at the seed weight stage (δ = 0.23). Although C. balearicum showed inbreeding depression on seed germination (δ = 0.45), this may be an artefact of the generally low levels of seed germination in the experiment. Overall, we observed only limited evidence for the predicted negative relation between inbreeding coefficients and levels of inbreeding since C. creticum had high levels of inbreeding and inbreeding depression. Other factors may thus influence the relationship between inbreeding and inbreeding depression in these species.  相似文献   

9.
We tested the hypothesis that marginal fragmented populations of eastern white cedar (EWC) are genetically isolated due to reduced pollen and gene flow. In accordance with the central-marginal model, we predicted a decrease in population genetic diversity and an increase in differentiation along the latitudinal gradient from the boreal mixed-wood to northern coniferous forest. A total of 24 eastern white cedar populations were sampled along the north-south latitudinal gradient for microsatellite genotyping analysis. Positive Fis values and heterozygote deficiency were observed in populations from the marginal (Fis = 0.244; PHW = 0.0042) and discontinuous zones (Fis = 0.166; PHW = 0.0042). However, populations from the continuous zone were in HW equilibrium (Fis = −0.007; PHW = 0.3625). There were no significant latitudinal effects on gene diversity (Hs), allelic richness (AR), or population differentiation (Fst). Bayesian and NJT (neighbor-joining tree) analyses demonstrated the presence of a population structure that was partly consistent with the geographic origins of the populations. The impact of population fragmentation on the genetic structure of EWC is to create a positive inbreeding coefficient, which was two to three times higher on average than that of a population from the continuous zone. This result indicated a higher occurrence of selfing within fragmented EWC populations coupled with a higher degree of gene exchange among near-neighbor relatives, thereby leading to significant inbreeding. Increased population isolation was apparently not correlated with a detectable effect on genetic diversity. Overall, the fragmented populations of EWC appear well-buffered against effects of inbreeding on genetic erosion.  相似文献   

10.
The marsh fritillary (Euphydryas aurinia) is a critically endangered butterfly species in Denmark known to be particularly vulnerable to habitat fragmentation due to its poor dispersal capacity. We identified and genotyped 318 novel SNP loci across 273 individuals obtained from 10 small and fragmented populations in Denmark using a genotyping‐by‐sequencing (GBS) approach to investigate its population genetic structure. Our results showed clear genetic substructuring and highly significant population differentiation based on genetic divergence (F ST) among the 10 populations. The populations clustered in three overall clusters, and due to further substructuring among these, it was possible to clearly distinguish six clusters in total. We found highly significant deviations from Hardy–Weinberg equilibrium due to heterozygote deficiency within every population investigated, which indicates substructuring and/or inbreeding (due to mating among closely related individuals). The stringent filtering procedure that we have applied to our genotype quality could have overestimated the heterozygote deficiency and the degree of substructuring of our clusters but is allowing relative comparisons of the genetic parameters among clusters. Genetic divergence increased significantly with geographic distance, suggesting limited gene flow at spatial scales comparable to the dispersal distance of individual butterflies and strong isolation by distance. Altogether, our results clearly indicate that the marsh fritillary populations are genetically isolated. Further, our results highlight that the relevant spatial scale for conservation of rare, low mobile species may be smaller than previously anticipated.  相似文献   

11.
Considerable controversy surrounds the importance of inbreeding in natural populations. The rate of natural inbreeding and the influences of behavioral mechanisms that serve to promote or minimize inbreeding (e.g., philopatry vs. dispersal) are poorly understood. We studied inbreeding and social structuring of a population of black-tailed prairie dogs (Cynomys ludovicianus) to assess the influence of dispersal and mating behavior on patterns of genetic variation. We examined 15 years of data on prairie dogs, including survival and reproduction, social behavior, pedigrees, and allozyme alleles. Pedigrees revealed mean inbreeding coefficients (F) of 1–2%. A breeding-group model that incorporated details of prairie dog behavior and demography was used to estimate values of fixation indices (F-statistics). Model predictions were consistent with the minimization of inbreeding within breeding groups (“coteries,” asymptotic FIL = –0.18) and random mating within the subpopulation (“colony,” asymptotic FIS = 0.00). Estimates from pedigrees (mean FIL = –0.23, mean FIS = 0.00) and allozyme data (mean FIL = –0.21, mean FIS = –0.01) were consistent with predictions of the model. The breeding-group model, pedigrees, and allozyme data showed remarkably congruent results, and indicated strong genetic structuring within the colony (FLS = 0.16, 0.19, and 0.17, respectively). We concluded that although inbreeding occurred in the colony, the rate of inbreeding was strongly minimized at the level of breeding groups, but not at the subpopulation level. The behavioral mechanisms most important to the minimization of inbreeding appeared to be patterns of male-biased dispersal of both subadults and adults, associated with strong philopatry of females. Incest avoidance also occurred, associated with recognition of close kin via direct social learning within the breeding groups.  相似文献   

12.

Background

Coral reefs in the Tropical Eastern Pacific (TEP) are amongst the most peripheral and geographically isolated in the world. This isolation has shaped the biology of TEP organisms and lead to the formation of numerous endemic species. For example, the coral Pocillopora damicornis is a minor reef-builder elsewhere in the Indo-West Pacific, but is the dominant reef-building coral in the TEP, where it forms large, mono-specific stands, covering many hectares of reef. Moreover, TEP P. damicornis reproduces by broadcast spawning, while it broods mostly parthenogenetic larvae throughout the rest of the Indo-West Pacific. Population genetic surveys for P. damicornis from across its Indo-Pacific range indicate that gene flow (i.e. larval dispersal) is generally limited over hundreds of kilometers or less. Little is known about the population genetic structure and the dispersal potential of P. damicornis in the TEP.

Methodology

Using multilocus microsatellite data, we analyzed the population structure of TEP P. damicornis among and within nine reefs and test for significant genetic structure across three geographically and ecologically distinct regions in Panama.

Principal Findings/Conclusions

We detected significant levels of population genetic structure (global RST = 0.162), indicating restricted gene flow (i.e. larvae dispersal), both among the three regions (RRT = 0.081) as well as within regions (RSR = 0.089). Limited gene flow across a distinct environmental cline, like the regional upwelling gradient in Panama, indicates a significant potential for differential adaptation and population differentiation. Individual reefs were characterized by unexpectedly high genet diversity (avg. 94%), relatively high inbreeding coefficients (global FIS = 0.183), and localized spatial genetic structure among individuals (i.e. unique genets) over 10 m intervals. These findings suggest that gene flow is limited in TEP P. damicornis populations, particularly among regions, but even over meter scales within populations.  相似文献   

13.
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (FST = 0.892) and significantly higher amongst UK populations (FST = 0.949) than Scandinavian populations (FST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK.  相似文献   

14.
Assortative mating is an important factor in the process of speciation. Models of speciation frequently deal with small founder populations often with mating preferences based on ecological traits or habitat preferences. Small populations, on the other hand might suffer from inbreeding. However, few studies have explored the combined effects of assortative mating and inbreeding in such populations. Can they speciate, or are they doomed to eventually go extinct? With this simulation we show that assortative mating based on similarities increases the possibility for change in a population, as long as the population does not suffer from inbreeding depression. Inbred populations seem not to be able to cope with strong assortative mating, as this is likely to elevate the level of inbreeding, increasing the risks of inbreeding depression and as a result decreasing population mean fitness. This in turn hinders the possibility of change, and instead might drive the population to extinction.  相似文献   

15.

Background  

Understanding the mechanisms that control species genetic structure has always been a major objective in evolutionary studies. The association between genetic structure and species attributes has received special attention. As species attributes are highly taxonomically constrained, phylogenetically controlled methods are necessary to infer causal relationships. In plants, a previous study controlling for phylogenetic signal has demonstrated that Wright's F ST, a measure of genetic differentiation among populations, is best predicted by the mating system (outcrossing, mixed-mating or selfing) and that plant traits such as perenniality and growth form have only an indirect influence on F ST via their association with the mating system. The objective of this study is to further outline the determinants of plant genetic structure by distinguishing the effects of mating system on gene flow and on genetic drift. The association of biparental inbreeding and inbreeding depression with population genetic structure, mating system and plant traits are also investigated.  相似文献   

16.
Mating with close kin can lead to inbreeding depression through the expression of recessive deleterious alleles and loss of heterozygosity. Mate selection may be affected by kin encounter rate, and inbreeding avoidance may not be uniform but associated with age and social system. Specifically, selection for kin recognition and inbreeding avoidance may be more developed in species that live in family groups or breed cooperatively. To test this hypothesis, we compared kin encounter rate and the proportion of related breeding pairs in noninbred and highly inbred canid populations. The chance of randomly encountering a full sib ranged between 1-8% and 20-22% in noninbred and inbred canid populations, respectively. We show that regardless of encounter rate, outside natal groups mates were selected independent of relatedness. Within natal groups, there was a significant avoidance of mating with a relative. Lack of discrimination against mating with close relatives outside packs suggests that the rate of inbreeding in canids is related to the proximity of close relatives, which could explain the high degree of inbreeding depression observed in some populations. The idea that kin encounter rate and social organization can explain the lack of inbreeding avoidance in some species is intriguing and may have implications for the management of populations at risk.  相似文献   

17.
In bryophytes, the possibility of intragametophytic selfing creates complex mating patterns that are not possible in seed plants, although relatively little is known about patterns of inbreeding in natural populations. In the peat‐moss genus Sphagnum, taxa are generally bisexual (gametophytes produce both sperm and egg) or unisexual (gametes produced by separate male and female plants). We sampled populations of 14 species, aiming to assess inbreeding variation and inbreeding depression in sporophytes, and to evaluate correlations between sexual expression, mating systems, and microhabitat preferences. We sampled maternal gametophytes and their attached sporophytes at 12–19 microsatellite loci. Bisexual species exhibited higher levels of inbreeding than unisexual species but did generally engage in some outcrossing. Inbreeding depression did not appear to be common in either unisexual or bisexual species. Genetic diversity was higher in populations of unisexual species compared to populations of bisexual species. We found a significant association between species microhabitat preference and population genetic diversity: species preferring hummocks (high above water table) had populations with lower diversity than species inhabiting hollows (at the water table). We also found a significant interaction between sexual condition, microhabitat preference, and inbreeding coefficients, suggesting a vital role for species ecology in determining mating patterns in Sphagnum populations. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 96–113.  相似文献   

18.
Characterizing inbreeding depression in wildlife populations can be critical to their conservation. Coefficients of individual inbreeding can be estimated from genome‐wide marker data. The degree to which sensitivity of inbreeding coefficients to population genetic substructure alters estimates of inbreeding depression in wild populations is not well understood. Using generalized linear models, we tested the power of two frequently used inbreeding coefficients that are calculated from genome‐wide SNP markers, FH and F^III, to predict four fitness traits estimated over two decades in an isolated population of the critically endangered Leadbeater's possum. FH estimates inbreeding as excess observed homozygotes relative to equilibrium expectations, whereas F^III quantifies allelic similarity between the gametes that formed an individual, and upweights rare homozygotes. We estimated FH and F^III from 1,575 genome‐wide SNP loci in individuals with fitness trait data (N = 179–237 per trait), and computed revised coefficients, FHby group and F^IIIby group, adjusted for population genetic substructure by calculating them separately within two different genetic groups of individuals identified in the population. Using FH or F^III in the models, inbreeding depression was detected for survival to sexual maturity, longevity and whether individuals bred during their lifetime. F^IIIby group (but not FHby group) additionally revealed significant inbreeding depression for lifetime reproductive output (total offspring assigned to each individual). Estimates of numbers of lethal equivalents indicated substantial inbreeding load, but differing between inbreeding estimators. Inbreeding depression, declining population size, and low and declining genetic diversity suggest that genetic rescue may assist in preventing extinction of this unique Leadbeater's possum population.  相似文献   

19.
Even though parasitic flatworms are one of the most species‐rich groups of hermaphroditic organisms, we know virtually nothing of their mating systems (selfing or kin‐mating rates) in nature. Hence, we lack an understanding of the role of inbreeding in parasite evolution. The natural mating systems of parasitic flatworms have remained elusive due to the inherent difficulty in generating progeny‐array data in many parasite systems. New developments in pedigree reconstruction allow direct inference of realized selfing rates in nature by simply using a sample of genotyped individuals. We built upon this advancement by utilizing the closed mating systems, that is, individual hosts, of endoparasites. In particular, we created a novel means to use pedigree reconstruction data to estimate potential kin‐mating rates. With data from natural populations of a tapeworm, we demonstrated how our newly developed methods can be used to test for cosibling transmission and inbreeding depression. We then showed how independent estimates of the two mating system components, selfing and kin‐mating rates, account for the observed levels of inbreeding in the populations. Thus, our results suggest that these natural parasite populations are in inbreeding equilibrium. Pedigree reconstruction analyses along with the new companion methods we developed will be broadly applicable across a myriad of parasite species. As such, we foresee that a new frontier will emerge wherein the diverse life histories of flatworm parasites could be utilized in comparative evolutionary studies to broadly address ecological factors or life history traits that drive mating systems and hence inbreeding in natural populations.  相似文献   

20.
We investigated the mating system and population genetic structure of the invasive haplodiploid palm‐seed borer Coccotrypes dactyliperda in California. We focused on whether these primarily inbreeding beetles have a ‘mixed‐breeding’ system that includes occasional outbreeding, and whether local inbreeding coefficients (FIS) varied with dominant environmental factors. We also analysed the genetic structure of C. dactyliperda populations across local and regional scales. Based on the analysis of genetic variation at seven microsatellite loci in 1034 individual beetles from 59 populations, we found both high rates of inbreeding and plentiful evidence of mixed‐breeding. FIS ranged from ?0.56 to 0.90, the highest variability reported within any animal species. There was a negative correlation between FIS and latitude, suggesting that some latitude‐associated factor affecting mating decisions influenced inbreeding rates. Multiple regressions suggested that precipitation, but not temperature, may be an important correlate. Finally, we found highly significant genetic differentiation among sites, even over short geographic distances (< 1000 m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号