首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor‐β super family. It has multiple effects on development, physiology and diseases. However, the role of GDF11 in the development of mesenchymal stem cells (MSCs) is not clear. To explore the effects of GDF11 on the differentiation and pro‐angiogenic activities of MSCs, mouse bone marrow–derived MSCs were engineered to overexpress GDF11 (MSCGDF11) and their capacity for differentiation and paracrine actions were examined both in vitro and in vivo. Expression of endothelial markers CD31 and VEGFR2 at the levels of both mRNA and protein was significantly higher in MSCGDF11 than control MSCs (MSCVector) during differentiation. More tube formation was observed in MSCGDF11 as compared with controls. In an in vivo angiogenesis assay with Matrigel plug, MSCGDF11 showed more differentiation into CD31+ endothelial‐like cells and better pro‐angiogenic activity as compared with MSCVector. Mechanistically, the enhanced differentiation by GDF11 involved activation of extracellular‐signal‐related kinase (ERK) and eukaryotic translation initiation factor 4E (EIF4E). Inhibition of either TGF‐β receptor or ERK diminished the effect of GDF11 on MSC differentiation. In summary, our study unveils the function of GDF11 in the pro‐angiogenic activities of MSCs by enhancing endothelial differentiation via the TGFβ‐R/ERK/EIF4E pathway.  相似文献   

2.
We investigated the effect of Wnt11 on mitochondrial membrane integrity in cardiomyocytes (CMs) and the underlying mechanism of Wnt11-mediated CM protection against hypoxic injury. A rat mesenchymal stem cell (MSC) line that overexpresses Wnt11 (MSCWnt11) and a control cell line transduced with empty vector (MSCNull) were established to determine the cardioprotective role of Wnt11 in response to hypoxia. Mitochondrial membrane integrity in MSCWnt11 cells was assessed using fluorescence assays. The role of paracrine signaling mediated by vascular endothelial growth factor (VEGF), basic fibroblast growth factor (b-FGF), and insulin-like growth factor 1 (IGF-1) in protecting CMs against hypoxia were investigated using cocultures of primary CMs from neonatal rats with conditioned medium (CdM) from MSCWnt11. MSCWnt11 cells exposed to hypoxia reduced lactate dehydrogenase release from CMs and increased CM survival under hypoxia. In addition, CMs cocultured with CdM that were exposed to hypoxia showed reduced CM apoptosis and necrosis. There was significantly higher VEGF and IGF-1 release in the MSCWnt11 group compared with the MSCNull group, and the addition of anti-VEGF and anti-IGF-1 antibodies inhibited secretion. Moreover, mitochondrial membrane integrity was maintained in the MSCWnt11 cell line. In conclusion, overexpression of Wnt11 in MSCs promotes IGF-1 and VEGF release, thereby protecting CMs against hypoxia.  相似文献   

3.
4.
5.
Mesenchymal stem cells (MSCs) have emerged as a potential cell‐based therapy for pulmonary emphysema in animal models. Our previous study demonstrated that human induced pluripotent stem cell–derived MSCs (iPSC‐MSCs) were superior over bone marrow–derived MSCs (BM‐MSCs) in attenuating cigarette smoke (CS)‐induced airspace enlargement possibly through mitochondrial transfer. This study further investigated the effects of iPSC‐MSCs on inflammation, apoptosis, and proliferation in a CS‐exposed rat model and examined the effects of the secreted paracrine factor from MSCs as another possible mechanism in an in vitro model of bronchial epithelial cells. Rats were exposed to 4% CS for 1 hr daily for 56 days. At days 29 and 43, human iPSC‐MSCs or BM‐MSCs were administered intravenously. We observed significant attenuation of CS‐induced elevation of circulating 8‐isoprostane and cytokine‐induced neutrophil chemoattractant‐1 after iPSC‐MSC treatment. In line, a superior capacity of iPSC‐MSCs was also observed in ameliorating CS‐induced infiltration of macrophages and neutrophils and apoptosis/proliferation imbalance in lung sections over BM‐MSCs. In support, the conditioned medium (CdM) from iPSC‐MSCs ameliorated CS medium‐induced apoptosis/proliferation imbalance of bronchial epithelial cells in vitro. Conditioned medium from iPSC‐MSCs contained higher level of stem cell factor (SCF) than that from BM‐MSCs. Deprivation of SCF from iPSC‐MSC‐derived CdM led to a reduction in anti‐apoptotic and pro‐proliferative capacity. Taken together, our data suggest that iPSC‐MSCs may possess anti‐apoptotic/pro‐proliferative capacity in the in vivo and in vitro models of CS‐induced airway cell injury partly through paracrine secretion of SCF.  相似文献   

6.
Lian WS  Cheng WT  Cheng CC  Hsiao FS  Chen JJ  Cheng CF  Wu SC 《Life sciences》2011,88(9-10):455-464
AimIntra-myocardial injection of adult bone marrow-derived stem cells (MSC) has recently been proposed as a therapy to repair damaged cardiomyocytes after acute myocardial infarction (AMI). PGI2 has vasodilatation effects; however, the effects of combining both MSC and PGI2 therapy on AMI have never been evaluated.Main methodsWe genetically enhanced prostaglandin I synthase (PGIS) gene expression in mouse mesenchymal stem cells (MSC) using lentiviral vector transduction (MSCPGIS). Mice were subjected to an AMI model and injected (intra-myocardially) with either 5 × 104 MSCs or MSCPGIS before surgery. Fourteen days post AMI, mice were analyzed with echocardiography, immunohistochemistry, and apoptotic, and traditional tissue assays.Key findingsLenti-PGIS transduction did not change any characteristic of the MSCs. PGIS over-expressed MSCs secreted 6-keto-PGF1α in the culture medium and decreased free radical damage during hypoxia/re-oxygenation and H2O2 treatment. Furthermore, splenocyte proliferation was significantly suppressed with MSCPGIS as compared with MSCs alone. Fourteen days post AMI, echocardiography showed more improvement in cardiac function of the MSCPGIS group than the MSC alone group, sham-operated group, or artery ligation only group. The histology of MSCPGIS treated hearts revealed MSCs in the infarcted region and decreased myocardial fibrosis/apoptosis with limited cardiac remodeling. Furthermore, the level of the vascular endothelial growth factor was elevated in the MSCPGIS group as compared to the other three groups.SignificanceIn summary, our results provide both in vitro and in vivo evidence for the beneficial role of MSCPGIS in limiting the process of detrimental cardiac remodeling in a mouse AMI model during early stages of the disease.  相似文献   

7.
WRN mutation causes a premature aging disease called Werner syndrome (WS). However, the mechanism by which WRN loss leads to progeroid features evident with impaired tissue repair and regeneration remains unclear. To determine this mechanism, we performed gene editing in reprogrammed induced pluripotent stem cells (iPSCs) derived from WS fibroblasts. Gene correction restored the expression of WRN. WRN+/+ mesenchymal stem cells (MSCs) exhibited improved pro‐angiogenesis. An analysis of paracrine factors revealed that hepatocyte growth factor (HGF) was downregulated in WRN?/? MSCs. HGF insufficiency resulted in poor angiogenesis and cutaneous wound healing. Furthermore, HGF was partially regulated by PI3K/AKT signaling, which was desensitized in WRN?/? MSCs. Consistently, the inhibition of the PI3K/AKT pathway in WRN+/+ MSC resulted in reduced angiogenesis and poor wound healing. Our findings indicate that the impairment in the pro‐angiogenic function of WS‐MSCs is due to HGF insufficiency and PI3K/AKT dysregulation, suggesting trophic disruption between stromal and epithelial cells as a mechanism for WS pathogenesis.  相似文献   

8.

Introduction

microRNAs (miRs), a novel class of small non-coding RNAs, are involved in cell proliferation, differentiation, development, and death. In this study, we found that miR-221 translocation by microvesicles (MVs) plays an important role in cardioprotection mediated by GATA-4 overexpressed mesenchymal stem cells (MSC).

Methods and Results

Adult rat bone marrow MSC and neonatal rat ventricle cardiomyocytes (CM) were harvested as primary cultures. MSC were transduced with GATA-4 (MSCGATA-4) using the murine stem cell virus (pMSCV) retroviral expression system. Empty vector transfection was used as a control (MSCNull). The expression of miRs was assessed by real-time PCR and localized using in situ hybridization (ISH). MVs collected from MSC cultures were characterized by expression of CD9, CD63, and HSP70, and photographed with electron microscopy. Cardioprotection during hypoxia afforded by conditioned medium (CdM) from MSC cultures was evaluated by lactate dehydrogenase (LDH) release, MTS uptake by CM, and caspase 3/7 activity. Expression of miR-221/222 was significantly higher in MSC than in CM and miR-221 was upregulated in MSCGATA-4. MSC overexpression of miR-221 significantly enhanced cardioprotection by reducing the expression of p53 upregulated modulator of apoptosis (PUMA). Moreover, expression of PUMA was significantly decreased in CM co-cultured with MSC. MVs derived from MSC expressed high levels of miR-221, and were internalized quickly by CM as documented in images obtained from a Time-Lapse Imaging System.

Conclusions

Our results demonstrate that cardioprotection by MSCGATA-4 may be regulated in part by a transfer of anti-apoptotic miRs contained within MVs.  相似文献   

9.

Background

Transplanted mesenchymal stem cells (MSC) can differentiate into cardiac cells that have the potential to contribute to heart repair following ischemic injury. Overexpression of GATA-4 can significantly increase differentiation of MSC into cardiomyocytes (CM). However, the specific impact of GATA-4 overexpression on the electrophysiological properties of MSC-derived CM has not been well documented.

Methods

Adult rat bone marrow MSC were retrovirally transduced with GATA-4 (MSCGATA-4) and GFP (MSCNull) and subsequently co-cultured with neonatal rat ventricular cardiomyocytes (CM). Electrophysiological properties and mRNA levels of ion channels were assessed in MSC using patch-clamp technology and real-time PCR.

Results

MSCGATA-4 exhibited higher levels of the TTX-sensitive Na+ current (INa.TTX), L-type calcium current (ICa.L), transient outward K+ current (Ito), delayed rectifier K+ current (IKDR) and inwardly rectifying K+ current (IK1) channel activities reflective of electrophysiological characteristics of CM. Real-time PCR analyses showed that MSCGATA-4 exhibited upregulated mRNA levels of Kv1.2, Kv2.1, SCN2a1, CCHL2a, KV1.4 and Kir1.1 channels versus MSCNull. Interestingly, MSCGATA-4 treated with IGF-1 neutralizing antibodies resulted in a significant decrease in Kir1.1, Kv2.1, KV1.4, CCHL2a and SCN2a1 channel mRNA expression. Similarly, MSCGATA-4 treated with VEGF neutralizing antibodies also resulted in an attenuated expression of Kv2.1, Kv1.2, Kv1.4, Kir1.1, CCHL2a and SCN2a1 channel mRNAs.

Conclusions

GATA-4 overexpression increases Ito, IKDR, IK1, INa.TTX and ICa.L currents in MSC. Cytokine (VGEF and IGF-1) release from GATA-4 overexpressing MSC can partially account for the upregulated ion channel mRNA expression.

General significance

Our results highlight the ability of GATA4 to boost the cardiac electrophysiological potential of MSC.  相似文献   

10.
11.

Background

Clusterin (Clu) is a stress-responding protein with multiple biological functions. Our preliminary microarray studies show that clusterin was prominently upregulated in mesenchymal stem cells (MSCs) overexpressing GATA-4 (MSCGATA-4). We hypothesized that the upregulation of clusterin is involved in overexpression of GATA-4 mediated cytoprotection.

Methods

MSCs harvested from bone marrow of rats were transduced with GATA-4. The expression of clusterin in MSCs was further confirmed by real-time PCR and western blotting. Simulation of ischemia was achieved by exposure of MSCs to a hypoxic environment. Lactate dehydrogenase (LDH) released from MSCs was served as a biomarker of cell injury and MTs uptake was used to estimate cell viability. Mitochondrial function was evaluated by measuring mitochondrial membrane potential (ΔΨm) and caspase 3/7 activity.

Results

(1) Clusterin expression was up-regulated in MSCGATA-4 compared to control MSCs transfected with empty-vector (MSCNull). MSCGATA-4 were tolerant to 72 h hypoxia exposure as shown by reduced LDH release and higher MTs uptake. This protection was abrogated by transfecting Clu-siRNA into MSCGATA-4. (2) Exogenous clusterin significantly decreased LDH release and increased MSC survival in hypoxic environment. Moreover, ΔΨm was maintained and caspase 3/7 activity was reduced by clusterin in a concentration-dependent manner. (3) p-Akt expression in MSCs was upregulated following pre-treatment with clusterin, with no change in total Akt. Moreover, cytoprotection mediated by clusterin was partially abrogated by Akt inhibitor LY294002.

Conclusions

Clusterin/Akt signaling pathway is involved in GATA-4 mediated cytoprotection against hypoxia stress. It is suggested that clusterin may be therapeutically exploited in MSC based therapy for cardiovascular diseases.  相似文献   

12.
Wei F  Wang T  Liu J  Du Y  Ma A 《Experimental cell research》2011,(18):2661-2670
Mesenchymal stem cells (MSCs) are regarded as a promising source of cell-based therapy for heart injury. In fact, less than 30% of MSCs contribute to cardiomyocytes differentiation, and the isolation procedure and biological characteristics of this population of cells remain unknown. Here we isolate and investigate the biological characteristics of this subpopulation of MSCs. Twenty four MSC clones were randomly selected using single-cell monoclonal technology. After induced with 5-azacytidine, eight clones displayed cardiomyocyte-like morphologies, and highly (over 90%) expressed cardiac-specific markers cTnT and α-actin, and displayed transient outward K+ current (Ito), inwardly rectifying K+ current (IK1) and delayed rectifier K+ current (IKDR), which were typical of cardiomocytes. Other clones merely showed Ito current, and the current densities were different from those of cardiomyocytes. In contrast to the other clones, before induced with 5-azacytidine, the eight clones expressed early cardiac markers GATA4 and NKX2.5, but not cTnT, α-actin, CD44 and CD90, and had no potentials for adiopogenesis, osteogenesis or chondrogenesis after induction. Our data suggest that the subgroup of MSCs that contributes to cardiomyocytes differentiation is cardiac progenitor cells. Moreover, we show the preliminary purification of this population of cells with a high potential for cardiomyocytes differentiation using single-cell monoclonal technology.  相似文献   

13.
Novel therapeutic regimens for tissue renewal incorporate mesenchymal stem cells (MSCs) as they differentiate into a variety of cell types and are a stem cell type that is easy to harvest and to expand in vitro. However, surface chemokine receptors, such as CXCR4, which are involved in the mobilization of MSCs, are expressed only on the surface of a small proportion of MSCs, and the lack of CXCR4 expression may underlie the low efficiency of homing of MSCs toward tissue damage, which results in a poor curative effect. Here, a rat CXCR4 expressing lentiviral vector was constructed and introduced into MSCs freshly prepared from rat bone marrow. The influence of CXCR4 expression on migration, proliferation, differentiation, and paracrine effects of MSCs was examined in vitro. The in vivo properties of CXCR4-MSCs were also investigated in a model of acute lung injury in rats induced by lipopolysaccharide. Expression of CXCR4 in MSCs significantly enhanced the chemotactic and paracrine characteristics of the cells in vitro but did not affect self-renewal or differentiation into alveolar and vascular endothelial cells. In vivo, CXCR4 improved MSC homing and colonization of damaged lung tissue, and furthermore, the transplanted CXCR4-MSCs suppressed the development of acute lung injury in part by modulating levels of inflammatory molecules and the neutrophil count. These results indicated that efficient mobilization of MSCs to sites of tissue injury may be due to CXCR4, and therefore, increased expression of CXCR4 may improve their therapeutic potential in the treatment of diseases where tissue damage develops.  相似文献   

14.
We reported previously that pre-programming mesenchymal stem cells with the GATA-4 gene increases significantly cell survival in an ischemic environment. In this study, we tested whether regulation of microRNAs and their target proteins was associated with the cytoprotective effects of GATA-4.Methods and resultsMesenchymal stem cells were harvested from adult rat bone marrow and transduced with GATA-4 (MSCGATA-4) using the murine stem cell virus retroviral expression system. Cells transfected with empty vector (MSCNull) were used as controls. Quantitative real-time PCR data showed that the expression levels of miR-15 family members (miR-15b, miR-16, and miR-195) were significantly down-regulated in MSCGATA-4. The protein expression of Bcl-w (Bcl-2-like-2), an anti-apoptotic Bcl-2 family protein, was increased in MSCGATA-4. Hypoxic culture (low glucose and low oxygen) induced the release of lactate dehydrogenase from mesenchymal stem cells and reduced cell survival. Compared to MSCNull, MSCGATA-4 showed less lactate dehydrogenase release and greater cell survival following 72 h hypoxia exposure. The mitochondrial membrane potential, detected with the dye JC-1, was well maintained, and mitochondrial membrane permeability, expressed as caspase 3 and 7 activities in response to the ischemic environment was lower in MSCGATA-4. Moreover, transfection with miR-195 significantly down-regulated Bcl-w expression in mesenchymal stem cells through a binding site in the 3′-UTR of the Bcl-w mRNA and reduced mesenchymal stem cell resistance to ischemic injury.ConclusionsThe overexpression of GATA-4 in mesenchymal stem cells down-regulates miR-15 family members, causing increased resistance to ischemia through the up-regulation of anti-apoptotic proteins in the Bcl-2 family.  相似文献   

15.
Wang  Xiaoyi  Jiang  Huijiao  Guo  Lijiao  Wang  Sibo  Cheng  Wenzhe  Wan  Longfei  Zhang  Zhongzhou  Xing  Lihang  Zhou  Qing  Yang  Xiongfeng  Han  Huanhuan  Chen  Xueling  Wu  Xiangwei 《Journal of molecular histology》2021,52(6):1155-1164

Cell-based therapeutics bring great hope in areas of unmet medical needs. Mesenchymal stem cells (MSCs) have been suggested to facilitate neovascularization mainly by paracrine action. Endothelial progenitor cells (EPCs) can migrate to ischemic sites and participate in angiogenesis. The combination cell therapy that includes MSCs and EPCs has a favorable effect on ischemic limbs. However, the mechanism of combination cell therapy remains unclear. Herein, we investigate whether stromal cell-derived factor (SDF)-1 secreted by MSCs contributes to EPC migration to ischemic sites via CXCR4/Phosphoinositide 3-Kinases (PI3K)/protein kinase B (termed as AKT) signaling pathway. First, by a “dual-administration” approach, intramuscular MSC injections were supplemented with intravenous Qdot® 525 labeled-EPC injections in the mouse model of hind limb ischemia. Then, the mechanism of MSC effect on EPC migration was detected by the transwell system, tube-like structure formation assays, western blot assays in vitro. Results showed that the combination delivery of MSCs and EPCs enhanced the incorporation of EPCs into the vasculature and increased the capillary density in mouse ischemic hind limb. The numbers of CXCR4-positive EPCs increased after incubation with MSC-conditioned medium (CM). MSCs contributed to EPC migration and tube-like structure formation, both of which were suppressed by AMD3100 and wortmannin. Phospho-AKT induced by MSC-CM was attenuated when EPCs were pretreated with AMD3100 and wortmannin. In conclusion, we confirmed that MSCs contributes to EPC migration, which is mediated via CXCR4/PI3K/AKT signaling pathway.

  相似文献   

16.
The homing of mesenchymal stem cells to injured tissue, which is important for the correction of conditions such as ischemia-reperfusion injury (IRI) and immunolesions, has been performed previously, but with poor efficiency. Substantial improvements in engraftment are required to derive clinical benefits from MSC transplantation. Chemokines are the most important factors that control cellular migration. Stromal derived factor-1 (SDF-1) is up-regulated during tissue/organ ischemia damage, and its cognate receptor, chemokine receptor 4 (CXCR4), is involved in stem cell migration. The aim of our study was to investigate CXCR4 expression in MSCs and to validate both its role in mediating migration to transplanted kidneys and its immunoregulatory effects in renal protection. Specifically, the present study was designed to investigate the short-term tissue homing of MSCs carrying genetically modified CXCR4 in a rat renal transplantation model. We tested the hypothesis that MSCs with CXCR4 over-expression can more efficiently regulate immunological reactions. Lentiviral vectors were used to over-express CXCR4 or to introduce a short hairpin ribonucleic acid (shRNA) construct targeting endogenous CXCR4 in rat MSCs. MSCs were labeled with enhanced green fluorescent protein (eGFP). After cell sorting, recipient kidneys were regionally perfused; recipient animals were injected with transduced MSCs, native MSCs, or PBS via tail vein following renal transplantation; and the effects of MSC injection were observed.  相似文献   

17.
Mesenchymal stem cells (MSCs) are an attractive candidate for autologous cell therapy, but their ability to repair damaged myocardium is severely compromised with advanced age. Development of viable autologous cell therapy for treatment of heart failure in the elderly requires the need to address MSC ageing. In this study, MSCs from young (2 months) and aged (24 months) C57BL/6 mice were characterized for gene expression of IGF‐1, FGF‐2, VEGF, SIRT‐1, AKT, p16INK4a, p21 and p53 along with measurements of population doubling (PD), superoxide dismutase (SOD) activity and apoptosis. Aged MSCs displayed senescent features compared with cells isolated from young animals and therefore were pre‐conditioned with glucose depletion to enhance age affected function. Pre‐conditioning of aged MSCs led to an increase in expression of IGF‐1, AKT and SIRT‐1 concomitant with enhanced viability, proliferation and delayed senescence. To determine the myocardial repair capability of pre‐conditioned aged MSCs, myocardial infarction (MI) was induced in 24 months old C57BL/6 wild type mice and GFP expressing untreated and pre‐conditioned aged MSCs were transplanted. Hearts transplanted with pre‐conditioned aged MSCs showed increased expression of paracrine factors, such as IGF‐1, FGF‐2, VEGF and SDF‐1α. This was associated with significantly improved cardiac performance as measured by dp/dtmax, dp/dtmin, LVEDP and LVDP, declined left ventricle (LV) fibrosis and apoptosis as measured by Masson's Trichrome and TUNEL assays, respectively, after 30 days of transplantation. In conclusion, pre‐conditioning of aged MSCs with glucose depletion can enhance proliferation, delay senescence and restore the ability of aged cells to repair senescent infarcted myocardium.  相似文献   

18.
《Cytotherapy》2014,16(1):111-121
Background aimsMesenchymal stromal cells (MSCs) resemble an essential component of the bone marrow niche for maintenance of stemness of hematopoietic progenitor cells (HPCs). Perturbation of the C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor-1α (SDF-1α) axis by plerixafor (AMD3100) mobilizes HPCs from their niche; however, little is known about how plerixafor affects interaction of HPCs and MSCs in vitro.MethodsWe monitored cell division kinetics, surface expression of CD34 and CXCR4, migration behavior and colony-forming frequency of HPCs on co-culture with MSCs either with or without exposure to plerixafor.ResultsCo-culture with MSCs significantly accelerated cell division kinetics of HPCs. Despite this, the proportion of CD34+ cells was significantly increased on co-culture, whereas the expression of CXCR4 was reduced. In addition, co-culture with MSCs led to significantly higher colony-forming capacity and enhanced migration rate of HPCs compared with mono-culture conditions. The composition of MSC sub-populations—and conversely their hematopoiesis supportive functions—may be influenced by culture conditions. We compared the stromal function of MSCs isolated with three different culture media. Overall, the supporting potentials of these MSC preparations were quite similar. Perturbation by the CXCR4-antagonist plerixafor reduced the cell division kinetics of HPCs on co-culture with MSCs. However, the progenitor cell potential of the HPCs as reflected by colony-forming capacity was not affected by plerixafor.ConclusionsThese results support the notion that the CXCR4/SDF-1α axis is critical for HPC-MSC interaction with regard to migration, adhesion and regulation of proliferation but not for maintenance of primitive progenitor cells.  相似文献   

19.
Myocardial infarction is one of the leading causes of mortality in aged people. Whether age of donors of mesenchymal stem cells (MSCs) affects its ability to repair the senescent heart tissue is unknown. In the present study, MSCs from young (2 months) and aged (18 months) green fluorescent protein expressing C57BL/6 mice were characterized with p16INK4a and β‐gal associated senescence. Myocardial infarction was produced in 18‐month‐old wild‐type C57BL/6 mice transplanted with MSCs from young and aged animals in the border of the infarct region. Expression of p16INK4a in MSCs from aged animals was significantly higher (21.5%± 1.2, P < 0.05) as compared to those from young animals (9.2%± 2.8). A decline in the tube‐forming ability on Matrigel was also observed in aged MSCs as well as down‐regulation of insulin‐like growth factor‐1, fibroblast growth factor (FGF‐2), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) compared to young cells. Mice transplanted with young MSCs exhibited significant improvement in their left ventricle (LV) systolic and diastolic function as demonstrated by dp/dtmax, dp/dtmin, Pmax. Reduction in the LV fibrotic area was concomitant with neovascularization as demonstrated by CD31 and smooth muscle actin (SMA) expression. Real‐time RT‐PCR analysis for VEGF, stromal cell derived factor (SDF‐1α) and GATA binding factor 4 (GATA‐4) genes further confirmed the effect of age on MSC differentiation towards cardiac lineages and enhanced angiogenesis. These studies lead to the conclusion that repair potential of MSCs is dependent on the age of donors and the repair of senescent infarcted myocardium requires young healthy MSCs.  相似文献   

20.
MicroRNAs have been appreciated in various cellular functions, including the regulation of angiogenesis. Mesenchymal-stem-cells (MSCs) transplanted to the MI heart improve cardiac function through paracrine-mediated angiogenesis. However, whether microRNAs regulate MSC induced angiogenesis remains to be clarified. Using microRNA microarray analysis, we identified a microRNA expression profile in hypoxia-treated MSCs and observed that among all dysregulated microRNAs, microRNA-377 was decreased the most significantly. We also validated that vascular endothelial growth factor (VEGF) is a target of microRNA-377 using dual-luciferase reporter assay and Western-blotting. Knockdown of endogenous microRNA-377 promoted tube formation in human umbilical vein endothelial cells. We then engineered rat MSCs with lentiviral vectors to either overexpress microRNA-377 (MSCmiR-377) or knockdown microRNA-377 (MSCAnti-377) to investigate whether microRNA-377 regulated MSC-induced myocardial angiogenesis, using MSCs infected with lentiviral empty vector to serve as controls (MSCNull). Four weeks after implantation of the microRNA-engineered MSCs into the infarcted rat hearts, the vessel density was significantly increased in MSCAnti-377-hearts, and this was accompanied by reduced fibrosis and improved myocardial function as compared to controls. Adverse effects were observed in MSCmiR-377-treated hearts, including reduced vessel density, impaired myocardial function, and increased fibrosis in comparison with MSCNull-group. These findings indicate that hypoxia-responsive microRNA-377 directly targets VEGF in MSCs, and knockdown of endogenous microRNA-377 promotes MSC-induced angiogenesis in the infarcted myocardium. Thus, microRNA-377 may serve as a novel therapeutic target for stem cell-based treatment of ischemic heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号