首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulating evidence suggests that mesenchymal stem cells (MSCs) may decrease destructive inflammation and reduce tissue loss. Tumor necrosis factor‐α (TNF‐α) plays a central role in induction of proinflammatory signaling and paradoxically activates intracellular anti‐inflammatory survival pathways. In this study, we investigated whether TNF‐α could induce a chemotactic effect on human MSCs and stimulate their production of anti‐inflammatory factors in vitro, as well as determined mechanisms that mediated this effect. Migration assays demonstrated that TNF‐α had a chemotactic effect on MSCs. TNF‐α increased both hepatocyte growth factor (HGF) mRNA expression in MSCs and HGF secretion in conditioned medium. These effects were dependent on the p38 MAPK and PI3K/Akt, but not JNK and ERK signaling pathways. Furthermore, these effects were inhibited by a specific neutralizing antibody to TNF receptor II, but not TNF receptor I. We conclude that TNF‐α can enhance human MSCs migration and stimulate their production of HGF. These effects are mediated via a specific TNF receptor and signaling pathways. J. Cell. Biochem. 111: 469–475, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Mesenchymal stem cells (MSCs) have drawn great attention because of their therapeutic potential. It has been suggested that intra‐venous infused MSCs could migrate the site of injury to help repair the damaged tissue. However, the mechanism for MSC migration is still not clear so far. In this study, we reported that hypoxia increased chemotaxis migration of MSCs. At 4 and 6 hours after culturing in hypoxic (1% oxygen) conditions, the number of migrated MSCs was significantly increased. Meanwhile, hypoxia also increased the expression of HIF‐1α and SDF‐1. Using small interference RNA, we knocked down the expression of HIF‐1α in MSCs to study the role of HIF‐1α in hypoxia induced migration. Our data indicated that knocking down the expression of HIF‐1α not only abolished the migration of MSCs, but also reduced the expression of SDF‐1. Combining the results of migration assay and expression at RNA and protein level, we demonstrated a novel mechanism that controls the increase of MSCs migration. This mechanism involved HIF‐1α mediated SDF‐1 expression. These findings provide new insight into the role of HIF‐1α in the hypoxia induced MSC migration and can be a benefit for the development of MSC‐based therapeutics for wound healing.  相似文献   

3.
4.
Inflammatory bowel disease is a kind of multi‐aetiological chronic disease that is driven by multidimensional factors. Hypoxia‐inducible factor‐1α (HIF‐1α) plays an important role in anti‐inflammatory and cellular responses to hypoxia. Previous studies have found that B or T‐cell‐specific HIF‐1α knock out mice exhibit severe colonic inflammation. However, we know very little about other functions of HIF‐1α in intestinal epithelial cells (IECs). In our study, HIF‐1αΔIEC mice were used to study the function of HIF‐1α in IECs. HIF‐1α was knocked down in Caco‐2 cells by transfection with a small interfering (si) RNA. Immunohistochemical staining and western blotting were used to detect the expression of zonula occluden‐1 (ZO‐1) and Occludin. The content of colon was harvested for high‐performance liquid chromatography analysis to examine the levels of butyrate in the gut. Our research found that HIF‐1α played a protective role in dextran sulphate sodium‐induced colitis, which was partly due to its regulation of tight junction (TJ) protein expression. Further study revealed that HIF‐1α mediated TJ proteins levels by moderating the content of butyrate. Moreover, we found that butyrate regulated TJ protein expression, which is dependent on HIF‐1α. These results indicated that there is a mutual regulatory mechanism between butyrate and HIF‐1α, which has an important role in the maintenance of barrier function of the gastrointestinal tract.  相似文献   

5.
6.
7.
8.
Increased tight junction (TJ) barrier permeability, induced by tumour necrosis factor (TNF)‐α, may lead to the defects in TJ barrier and subsequent development of inflammation. Recent evidence suggests that miR‐21 is implicated in inflammatory diseases. However, the physiological role of miR‐21 in intestinal permeability remains elusive. This study aimed to explore the role of miR‐21 in intestinal epithelial tight junction permeability. The filter‐grown Caco‐2 monolayers model system was established to mimic intestinal barrier defect. The tight junction proteins were detected by immunofluorescence and western blot analysis. The expression of miR‐21 was assessed by real‐time polymerase chain reaction (PCR). We found that the expression of miR‐21 was increased significantly in TNF‐α induced intestinal TJ barrier defect model. miR‐21 overexpression significantly enhanced while miR‐21 knockdown significantly decreased intestinal permeability. In addition, miR‐21 overexpression significantly increased while miR‐21 knockdown significantly decreased the levels of interleukin‐6, interleukin‐8 and prostaglandin E2 in cell culture medium. Furthermore, miR‐21 positively regulated Akt phosphorylation and negatively regulated Phosphatase and tensin homolog (PTEN) expression in Caco‐2 cells. Our results suggest that miR‐21 may regulate intestinal epithelial tight junction permeability through PTEN/PI3K/Akt signalling pathway. This promotes the feasibility of targeting miR‐21 in the clinical to preserve the intestinal barrier. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Transforming growth factor (TGF)-beta-induced chondrogenesis of mesenchymal stem cells derived from bone marrow involves the rapid deposition of a cartilage-specific extracellular matrix. The sequential events in this pathway leading from the undifferentiated stem cell to a mature chondrocyte were investigated by analysis of key matrix elements. Differentiation was rapidly induced in cells cultured in the presence of TGF-beta 3 or -beta 2 and was accompanied by the early expression of fibromodulin and cartilage oligomeric matrix protein. An increase in aggrecan and versican core protein synthesis defined an intermediate stage, which also involved the small leucine-rich proteoglycans decorin and biglycan. This was followed by the appearance of type II collagen and chondroadherin. The pathway was also characterized by the appearance of type X collagen, usually associated with hypertrophic cartilage. There was also a change in the pattern of sulfation of chondroitin sulfate, with a progressive increase in the proportion of 6-sulfated species. The major proportion of newly synthesized glycosaminoglycan was part of an aggregating proteoglycan network. These data allow us to define the phenotype of the differentiated cell and to understand in greater detail the sequential process of matrix assembly.  相似文献   

10.
Fumonisins (Fums) are mycotoxins widely distributed in crops and feed, and ingestion of Fums‐contaminated crops is harmful to animal health. The purpose of this study is to explore the effect of Fum B1 (FB1) on barrier functions of porcine intestinal epithelial cells, IPEC‐J2, to clarify the intestinal toxicity of Fums in pigs. The results showed that the persistent treatment of FB1 significantly decreased the viability of IPEC‐J2. Moreover, the expressions of Claudin 1, Occludin, Zonula Occluden‐1 (ZO‐1) on the messenger RNA (mRNA), and protein levels and MUC1 on the mRNA level were significantly inhibited after FB1 treatment, while the mRNA relative expression level of MUC2 was clearly increased. FB1 also enhanced the monolayer cell permeability of IPEC‐J2. Importantly, FB1 promoted the expression of phosphorylated extracellular regulated protein kinase (p‐ERK1/2). These data suggest that long‐term treatment of FB1 can suppress IPEC‐J2 proliferation, damage tight junctions of IPEC‐J2, and regulate expression of mucins to induce the damage of barrier functions of porcine intestinal epithelial cells, which may be associated with the ERK1/2 phosphorylation pathway.  相似文献   

11.
One of the biological functions of lactoferrin is the modulation of the host defense systems, including cytokine production and immune responses. We have tested the effect of lactoferrin on the productions of tumor necrosis factor‐α and nitric oxide in some cells. Lactoferrin itself did not induce either tumor necrosis factor‐α production or nitric oxide production, but lipopolysaccharide‐stimulated tumor necrosis factor‐α production of macrophages and monocytes were inhibited by lactoferrin treatment combined with stimulant. The induction of nitric oxide synthesis in stimulated macrophages and vascular smooth muscle cells was not affected by the lactoferrin. J. Cell. Biochem. 76:30–36, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
Little is known about the effects of mechanical forces on osteoclastogenesis by bone marrow macrophages (BMMs) in the absence of mechanosensitive cells, including osteoblasts and fibroblasts. In this study, we examined the effects of mechanical force on osteoclastogenesis by applying centrifugal force to BMMs using a horizontal microplate rotor. Our findings, as measured by an in vitro model system, show that tumor necrosis factor (TNF)‐α is capable of inducing osteoclast differentiation from BMMs and bone resorption in the presence of macrophage‐colony stimulating factor (M‐CSF) and is further facilitated by receptor activator of nuclear factor‐kappaB (NF‐κB) ligand (RANKL). Application of force to BMMs accelerated TNF‐α‐induced osteoclastogenesis; this was inhibited either by anti‐TNF‐α or anti‐TNF‐α receptor but not by OPG. TNF‐α also increased c‐Fms expression at both mRNA and protein levels in BMMs. An anti‐c‐Fms antibody completely inhibited osteoclast differentiation and bone resorption induced by TNF‐α but partially blocked osteoclastogenesis stimulated in combination with RANKL. These results suggest that TNF‐α (in the presence of M‐CSF) is capable of inducing osteoclastogenesis from BMMs, and that osteoclastogenesis is significantly stimulated by force application through the activation of c‐Fms‐mediated signaling. Overall, the present study reveals the facilitating effect of mechanical force on osteoclastic differentiation from BMMs without the addition of mechanosensitive cells. J. Cell. Biochem. 111: 1260–1269, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
In this study, we determined whether multilineage‐differentiating stress‐enduring (Muse) cells exist in rat bone marrow and elucidated their effects on protection against the injury of intestinal epithelial cells associated with inflammation. Rat Muse cells were separated from bone marrow mesenchymal stem cells (BMMSCs) by trypsin‐incubation stress. The group of cells maintained the characteristics of BMMSCs; however, there were high positive expression levels of stage‐specific embryonic antigen‐3 (SSEA‐3; 75.6 ± 2.8%) and stage‐specific embryonic antigen‐1 (SSEA‐1; 74.8 ± 3.1%), as well as specific antigens including Nanog, POU class 5 homeobox 1 (OCT 3/4), and SRY‐box 2 (SOX 2). After inducing differentiation, α‐fetoprotein (endodermal), α‐smooth muscle actin and neurofilament medium polypeptide (ectodermal) were positive in Muse cells. Injuries of intestinal epithelial crypt cell‐6 (IEC‐6) and colorectal adenocarcinoma 2 (Caco‐2) cells as models were induced by tumor necrosis factor‐α stimulation in vitro. Muse cells exhibited significant protective effects on the proliferation and intestinal barrier structure, the underlying mechanisms of which were related to reduced levels of interleukin‐6 (IL‐6) and interferon‐γ (IFN‐γ), and the restoration of transforming growth factor‐β (TGF‐β) and IL‐10 in the inflammation microenvironment. In summary, there were minimal levels of pluripotent stem cells in rat bone marrow, which exhibit similar properties to human Muse cells. Rat Muse cells could provide protection against damage to intestinal epithelial cells depending on their anti‐inflammatory and immune regulatory functionality. Their functional impact was more obvious than that of BMMSCs.  相似文献   

15.
16.
Previous studies have shown that the ovarian failure in autoimmune‐induced premature ovarian failure (POF) mice could be improved by the transplantation of human placenta‐derived mesenchymal stem cells (hPMSCs); however, the protective mechanism of hPMSCs transplantation on ovarian dysfunction remains unclear. Ovarian dysfunction is closely related to the apoptosis of granulosa cells (GCs). To determine the effects of hPMSCs transplantation on GCs apoptosis, an autoimmune POF mice model was established with zona pellucida glycoprotein 3 (ZP3) peptide. It is reported that the inositol‐requiring enzyme 1α (IRE1α) and its downstream molecules play a central role in the endoplasmic reticulum (ER) stress‐induced apoptosis pathway. So the aim of this study is to investigate whether hPMSCs transplantation attenuated GCs apoptosis via inhibiting ER stress IRE1α signaling pathway. The ovarian dysfunction, follicular dysplasia, and GCs apoptosis were observed in the POF mice. And the IRE1α pathway was activated in ovaries of POF mice, as demonstrated by, increased X‐box binding protein 1 (XBP1), up‐regulated 78 kDa glucose‐regulated protein (GRP78) and caspase‐12. Following transplantation of hPMSCs, the ovarian structure and function were significantly improved in POF mice. In addition, the GCs apoptosis was obviously attenuated and IRE1α pathway was significantly inhibited. Transplantation of hPMSCs suppressed GCs apoptosis‐induced by ER stress IRE1α signaling pathway in POF mice, which might contribute to the hPMSCs transplantation‐mediating ovarian function recovery.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号