首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

We investigated whether supplementation of a sunscreen containing the UVB absorber 2-ethyl-hexyl-methoxycinnamate (cinnamate) with oxygen radical inhibitors (ORI) would improve protection from sunburn, immunosuppression and carcinogenesis. Mice were exposed to solar-simulated UV radiation (ssUV) containing a mixture of UVB and UVA. In initial studies, the ORI 2,2′-dipyridyl and NG-monomethyl-L-arginine acetate (L-NMMA) were shown to prevent UVA-induced suppression of contact sensitivity (CS) in mice. Addition of these inhibitors to the sunscreen did not affect the sun protection factor (SPF), but lowered the level of edema when mice were exposed to ssUV. Combination of both inhibitors with the sunscreen, however, increased the SPF from 5 to 5.5. The immune protection factor (IPF) of the sunscreen was only 1.18, but addition of neither dipyridyl nor L-NMMA singly or in combination measurably improved immune protection. However, the ORI improved the ability of the sunscreen to prevent carcinogenesis. The results indicate that reactive oxygen or nitrogen species produced in response to UV radiation are important for erythema, immunosuppression and carcinogenesis, and addition of inhibitors improves the protective capacity of sunscreens.  相似文献   

2.
We have examined the mechanism by which solar-simulated ultraviolet radiation (ssUV) suppresses memory immunity to nickel in allergic humans. In initial studies, we used inbred mice to determine the contribution of different wavebands to sunlight-induced immunosuppression. We found that low dose UVA can enhance memory, medium dose UVA (half the amount in one minimum erythemal dose of ssUV) is immunosuppressive, but higher doses protect from UVB. This is genetically dependent, as it is not observed in all mouse strains. UVA caused a similar dose-related change in recall immunity in humans. ssUV dose responses determined the limits of protection provided by sunscreens from immunosuppression in humans. Immune protection factors calculated from these data correlated with UVA protection, but not with sun protection factor, showing that in commercial sunscreens that provide good UVB protection, UVA protection limits prevention of immunosuppression. N(G)-monomethyl-l-arginine acetate (l-NMMA) was used to inhibit nitric oxide (NO) production and T4N5 liposomes containing T4 endonuclease V to enhance DNA repair. Sub-erythemal ssUV caused a dose-related local suppression of recall immunity to nickel in humans. l-NMMA and the liposomes protected the nickel reaction, suggesting that NO and DNA damage are mediators of UV-induced immunosuppression in humans.  相似文献   

3.
Halliday GM 《Mutation research》2005,571(1-2):107-120
Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.  相似文献   

4.
Due to an increasing number of skin diseases as a result of exposure to ultraviolet (UV) radiation, it is necessary to evaluate the effectiveness of new skin care formulations with broad-spectrum sunscreens.
Objectives:  This study aims to assess the status of nerve fibres in healthy human skin, to quantify effects of UV radiation on nerve endings, and to evaluate neuroprotective effects of new skin care formulations against UV exposure damage.
Methods:  Samples were obtained from 34 female patients enrolled for plastic surgery and were immediately treated (10 min) with three emulsions: Cream 1, Cream 2 (placebo) and a sunscreen with sun protection factor 15 (SPF15). Control samples and those treated with the cream emulsions were exposed to UVA and UVB for 60 min. Nerve fibres were identified by immunofluorescence using a monoclonal antibody (anti-human CD56/NCAM). Cell damage was assessed by image analysis.
Results:  Several cellular nervous structures were identified in the skin samples, including free nerve endings. UVA and UVB significantly decreased (40–60%) density of nerve endings in the control samples and those treated with placebo (Cream 2) or SPF15 (all P  < 0.001). Cream 1 completely blocked effects of UV radiation on nerve endings ( P  > 0.05 vs. control).
Conclusions:  Quantification of cell damage induced by UV radiation provides useful information for identification of new skin care compounds with neuroprotective properties.  相似文献   

5.
This review of published in vitro and in vivo studies concerning the biological effects of ultraviolet A (UVA; 320-400 nm) radiation illustrates the evidence for combining UVA and UVB filters in sun-protection products. These data have led to the development of new sunscreens as well as methods to evaluate their efficacy. After listing the UVA filters available and briefly noting the requirements for a high SPF, broad-spectrum sunscreen, the methods for evaluating the level of UVA protection will be described. This article also summarizes several studies looking at the prevention of erythema, pigmentation, DNA damage, photoimmunosuppression, photoaging and photodermatoses. These data demonstrate in vitro and in vivo that only well-balanced UVA-UVB sunscreens, absorbing over the entire UV spectrum are able to prevent or significantly reduce the associated biological damage.  相似文献   

6.
The impact of sunscreen formulations on the barrier properties of human skin are often overlooked leading to formulations with components whose effects on barrier mechanical integrity are poorly understood. The aim of this study is to demonstrate the relevance of carrier selection and sunscreen photostability when designing sunscreen formulations to protect the biomechanical barrier properties of human stratum corneum (SC) from solar ultraviolet (UV) damage. Biomechanical properties of SC samples were assayed after accelerated UVB damage through measurements of the SC's mechanical stress profile and corneocyte cohesion. A narrowband UVB (305–315 nm) lamp was used to expose SC samples to 5, 30, 125, and 265 J cm?2 in order to magnify damage to the mechanical properties of the tissue and characterize the UV degradation dose response such that effects from smaller UV dosages can be extrapolated. Stresses in the SC decreased when treated with sunscreen components, highlighting their effect on the skin prior to UV exposure. Stresses increased with UVB exposure and in specimens treated with different sunscreens stresses varied dramatically at high UVB dosages. Specimens treated with sunscreen components without UVB exposure exhibited altered corneocyte cohesion. Both sunscreens studied prevented alteration of corneocyte cohesion by low UVB dosages, but differences in protection were observed at higher UVB dosages indicating UV degradation of one sunscreen. These results indicate the protection of individual sunscreen components vary over a range of UVB dosages, and components can even cause alteration of the biomechanical barrier properties of human SC before UV exposure. Therefore, detailed characterization of sunscreen formulation components is required to design robust protection from UV damage.  相似文献   

7.
Minerals such as titanium dioxide, TiO2, and zinc oxide, ZnO, are well known active semiconductor photocatalysts used extensively in heterogeneous photocatalysis to destroy environmental pollutants that are organic in nature. They are also extensively used in sunscreen lotions as active broadband sunscreens that screen both UVB (290-320 nm) and UVA (320-400 nm) sunlight radiation and as high SPF makers. When so photoactivated by UV light, however, these two particular metal oxides are known to generate highly oxidizing radicals (OH and ) and other reactive oxygen species (ROS) such as H2O2 and singlet oxygen, 1O2, which are known to be cytotoxic and/or genotoxic. Hydroxyl (OH) radicals photogenerated from photoactive TiO2 specimens extracted from commercial sunscreen lotions [R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikoshi, H. Hidaka, J. Knowland, FEBS Lett. 418 (1997) 87] induce damage to DNA plasmids in vitro and to whole human skin cells in cultures. Accordingly, the titanium dioxide particle surface was modified to produce TiO2 specimens of considerably reduced photoactivity. Deactivation of TiO2 diminishes considerably, in some cases completely suppresses damage caused to DNA plasmids, to human cells, and to yeast cells compared to non-modified specimens exposed to UVB/UVA simulated solar radiation. The photostabilities of sunscreen organic active agents in neat polar and apolar solvents and in actual commercial formulations have been examined [N. Serpone, A. Salinaro, A.V. Emeline, S. Horikoshi, H. Hidaka, J. Zhao, Photochem. Photobiol. Sci. 1 (2002) 970]. With rare exceptions, the active ingredients undergo photochemical changes (in some cases form free radicals) and the sunscreen lotions lose considerable Sun protection efficacy only after a relatively short time when exposed to simulated sunlight UVB/UVA radiation, confirming the recent findings by Sayre et al. [R.M. Sayre, J.C. Dowdy, A.J. Gerwig, W.J. Shields, R.V. Lloyd, Photochem. Photobiol. 81 (2005) 452].  相似文献   

8.
Moison, R. M. W. and Beijersbergen van Henegouwen, G. M. J. Dietary Eicosapentaenoic Acid Prevents Systemic Immunosuppression in Mice Induced by UVB Radiation. Radiat. Res. 156, 36-44 (2001).Reactive oxygen species (ROS) contribute to the immunosuppression induced by UVB radiation. Omega-3 fatty acids in fish oil, e.g. eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can modulate immunoresponsiveness, but because of their susceptibility to ROS-induced damage, they can also challenge the epidermal antioxidant defense system. The influence of dietary supplementation with different omega-3 fatty acids on systemic immunosuppression induced in mice by UVB radiation was studied using the contact hypersensitivity response to trinitrochlorobenzene. In an attempt to study the mechanisms involved, UVB-radiation-induced changes in epidermal antioxidant status were also studied. Mice received high-fat (25% w/w) diets enriched with either oleic acid (control diet), EPA, DHA, or EPA + DHA (MaxEPA). Immunosuppression induced by UVB radiation was 53% in mice fed the oleic acid diet and 69% in mice fed the DHA diet. In contrast, immunosuppression was only 4% and 24% in mice fed the EPA and MaxEPA diets, respectively. Increased lipid peroxidation and decreased vitamin E levels (P < 0.05) were found in unirradiated mice fed the MaxEPA and DHA diets. For all diets, exposure to UVB radiation increased lipid peroxidation (P < 0.05), but levels of glutathione (P < 0.05) and vitamin C (P > 0.05) decreased only in the mice given fish oil. UVB irradiation did not influence vitamin E levels. In conclusion, dietary EPA, but not DHA, protects against UVB-radiation-induced immunosuppression in mice. The degree of protection appears to be related to the amount of EPA incorporated and the ability of the epidermis to maintain an adequate antioxidant level after irradiation.  相似文献   

9.
There is a direct correlation between dermal mast cell prevalence in dorsal skin of different mouse strains and susceptibility to UVB-induced systemic immunosuppression; highly UV-susceptible C57BL/6 mice have a high dermal mast cell prevalence while BALB/c mice, which require considerable UV radiation for 50% immunosuppression, have a low mast cell prevalence. There is also a functional link between the prevalence of dermal mast cells and susceptibility to UVB- and cis-urocanic acid (UCA)-induced systemic immunosuppression. Mast cell-depleted mice are unresponsive to UVB or cis-UCA for systemic immunosuppression unless they are previously reconstituted at the irradiated or cis-UCA-administered site with bone marrow-derived mast cell precursors. cis-UCA does not stimulate mast cell degranulation directly. Instead, in support of studies showing that neither UVB nor cis-UCA was immunosuppressive in capsaicin-treated, neuropeptide-depleted mice, cis-UCA-stimulated neuropeptide release from sensory c-fibers which, in turn, could efficiently degranulate mast cells. Studies in mice suggested that histamine, and not tumor necrosis factor alpha (TNF-alpha), was the product from mast cells that stimulated downstream immunosuppression. Histamine receptor antagonists reduced by approximately 60% UVB and cis-UCA-induced systemic immunosuppression. Indomethacin administration to mice had a similar effect which was not cumulative with the histamine receptor antagonists. Histamine can stimulate keratinocyte prostanoid production. We propose that both histamine and prostaglandin E(2) are important in downstream immunosuppression; both are regulatory molecules supporting the development of T helper 2 cells and reduced expression of type 1 immune responses such as a contact hypersensitivity reaction.  相似文献   

10.
Background information on the inefficacy of sunscreens to provide free radical protection in skin, despite their usefulness in preventing sunburn/erythema, prompted us to synthesize a compound which would display in the same molecule both UV-absorbing and antioxidant capacities. For this purpose, the UVB absorber, 2-ethylhexyl-4-methoxycinnamate (OMC) was combined with the piperidine nitroxide TEMPOL, which has antioxidant properties. The spectral properties of the new nitroxide-based sunscreen (MC-NO) as well as its efficacy to prevent photo-oxidative damage to lipids induced by UVA, natural sunlight and 4-tert-butyl-4-methoxydibenzoylmethane (BMDBM), a photo-unstable sunscreen which generates free radicals upon UV radiation, was studied. The results obtained demonstrate that MC-NO: (a) absorbs in the UVB region even after UVA irradiation; (b) acts as free radical scavenger as demonstrated by EPR experiments; (c) strongly reduces both UVA-, sunlight- and BMDBM-induced lipid peroxidation in liposomes, measured as reduced TBARS levels; and (d) has comparable antioxidant activity to that of commonly used vitamin E and BHT in skin care formulations. These results suggest that the use of the novel sunscreen-antioxidant or of other nitroxide-based sunscreens in formulations aimed at reducing photoinduced skin damage may be envisaged.  相似文献   

11.
Abstract

Exposure of the skin of mice and men to increasing doses of UV radiation causes erythema, chronic hyperplasia, mutation, accelerated photo-ageing and photocarcinogenesis. Moderate exposure also suppresses T cell-mediated immune function, a defect which is a prerequisite for the promotion or outgrowth phase of the UV-initiated tumour. This immunosuppressed state is accompanied by dysregulated cutaneous cytokine patterns, particularly a relative deficit of Th1-type cytokines like interleukin (IL)-12 and interferon-γ (IFN-γ). The cutaneous photoreceptor for the immunosuppression may be either, or both, epidermal DNA or urocanic acid (UCA). Naturally occurring trans-UCA photo-isomerises in the stratum corneum and epidermis to cis-UCA, which has local and systemic immunosuppressive properties. The action spectrum for the photo-immunosuppression is maximal in the UVB (280–320 nm) waveband. However, longer wavelength UVA (320–400 nm), which interacts with skin predominantly via oxidative reactions, is not immunosuppressive at environmental exposure doses and, unexpectedly, as we have demonstrated in several strains of mice and opossums, can provide protection from UVB immunosuppression.1  相似文献   

12.
The in vitro star system used for sunscreen UVA-testing is not an absolute measure of skin protection being a ratio of the total integrated UVA/UVB absorption. The in vivo persistent-pigment-darkening method requires human volunteers. We investigated the use of the ESR-detectable DMPO protein radical-adduct in solar-simulator-irradiated skin substitutes for sunscreen testing. Sunscreens SPF rated 20+ with UVA protection, reduced this adduct by 40-65% when applied at 2 mg/cm(2). SPF 15 Organic UVA-UVB (BMDBM-OMC) and TiO(2)-UVB filters and a novel UVA-TiO(2) filter reduced it by 21, 31 and 70% respectively. Conventional broad-spectrum sunscreens do not fully protect against protein radical-damage in skin due to possible visible-light contributions to damage or UVA-filter degradation. Anisotropic spectra of DMPO-trapped oxygen-centred radicals, proposed intermediates of lipid-oxidation, were detected in irradiated sunscreen and DMPO. Sunscreen protection might be improved by the consideration of visible-light protection and the design of filters to minimise radical leakage and lipid-oxidation.  相似文献   

13.
Cydia pomonella granulovirus (CpGV) is a specific pathogen of codling moth, the most serious pest of apple worldwide and has recently been isolated in China. However, its use for codling moth control is limited by ultraviolet (UV) solar radiation, which is a major factor affecting the field persistence of this virus. The virion is occluded in the granulin matrix of occlusion bodies. Many substances have been tested as sunscreen agents, but little has been published on the use of reflectors with the occluded bodies (OBs) of CpGV. This work investigates the susceptibility of a native GV, CpGV-ZY, to UVB radiation over different time periods and evaluates the protective effect of two sunscreen agents, zinc oxide (ZnO) and titanium dioxide (TiO2). Laboratory tests showed 104 OB/ml of CpGV-ZY exposed to UVB light (3.5 W/m2) for 3.75 h caused 50% inactivity. At 15 mg/ml ZnO and 10 mg/ml TiO2, the mortality was highest after 4-h exposure to UVB light. Semi-field tests indicated both compounds are effective as UV protectants at low concentrations. These are the first results confirming that ZnO and TiO2 hold promise as UV protectants for this CpGV-ZY isolate. Moreover, it is apparently safe and effective to use within the range of concentrations needed for codling moth control.  相似文献   

14.
During the course of a day human skin is exposed to solar UV radiation that fluctuates in fluence rate within the UVA (290-315 nm) and UVB (315-400 nm) spectrum. Variables affecting the fluence rate reaching skin cells include differences in UVA and UVB penetrating ability, presence or absence of sunscreens, atmospheric conditions, and season and geographical location where the exposure occurs. Our study determined the effect of UVA fluence rate in solar-simulated (SSR) and tanning-bed radiation (TBR) on four indicators of oxidative stress---protein oxidation, glutathione, heme oxygenase-1, and reactive oxygen species--in human dermal fibroblasts after receiving equivalent UVA and UVB doses. Our results show that the higher UVA fluence rate in TBR increases the level of all four indicators of oxidative stress. In sequential exposures when cells are exposed first to SSR, the lower UVA fluence rate in SSR induces a protective response that protects against oxidative stress following a second exposure to a higher UVA fluence rate. Our studies underscore the important role of UVA fluence rate in determining how human skin cells respond to a given dose of radiation containing both UVA and UVB radiation.  相似文献   

15.
UV radiation induces skin cancer primarily by its DNA-damaging properties, but also by its capacity to suppress the immune system. The photoisomer of urocanic acid (UCA), cis-UCA, is an important mediator of UV-induced immunosuppression and is involved in the inhibition of tumor immunity. The immunomodulatory cytokine IL-12 is known to counteract many of the immunosuppressive effects of UV radiation, including UV-induced immune tolerance. In this study, we addressed whether IL-12 also reverts the immunosuppressive activities of cis-UCA. Cis-UCA inhibits the ability of Langerhans cells to present tumor Ags for primary and secondary tumor immune responses. IL-12 treatment completely prevented the suppression by cis-UCA. IL-12 also protected mice from cis-UCA-induced suppression of contact hypersensitivity responses. To study the effects of cis-UCA on Ag-processing and Ag-presenting function in vitro, Langerhans cells were treated with UCA isomers and incubated with OVA or OVA peptide(323-339) before exposure to OVA-specific transgenic T cells. Cis-, but not trans-UCA suppressed Ag presentation, which was completely reversed upon addition of IL-12. Since these findings suggest that cis-UCA may play an important role in photocarcinogenesis by inhibiting a tumor immune response, mice were chronically UVB irradiated to induce skin cancer. Whereas all mice in the control groups developed tumors, mice treated with a mAb with specificity for cis-UCA showed a significantly reduced tumor incidence. These data strongly indicate the importance of cis-UCA during photocarcinogenesis and support the concept of counteracting cis-UCA as an alternative strategy to prevent UV-induced skin cancer, possibly via the application of IL-12.  相似文献   

16.
The purpose of this study was to determine whether multiple types of suppressor factors play a role in the regulation of immune responses by ultraviolet radiation-induced suppressor T lymphocytes (UV Ts). The UV Ts were induced by applying contact allergens to the ventral, unirradiated skin of mice exposed 5 days earlier to UVB radiation. Previous studies indicated that supernatants from cultures containing UV Ts, normal lymphocytes, and hapten-modified cells suppressed contact hypersensitivity (CHS) in vivo and cytotoxic T lymphocyte (CTL) generation in vitro in a hapten-specific manner. In this report, cell-free lysates from sonically disrupted UV Ts were examined for their ability to suppress these responses. When lysates were injected into normal animals at the time of sensitization, they inhibited CHS in a hapten-nonspecific manner. In addition, the lysates suppressed not only the induction but also the elicitation of CHS, and they suppressed the generation of CTL. Lysates prepared from spleen cells obtained from non-UV-irradiated mice or UV-irradiated, unsensitized mice failed to inhibit either response. Moreover, in contrast to the lysates, the hapten-specific UV Ts culture supernatants inhibited the induction but not the elicitation of CHS. These results suggest that both hapten-specific and nonspecific inhibitory factors may participate in the regulation of immune responses by UV Ts.  相似文献   

17.
长波紫外线A(UVA,320~400nm)照射皮肤后可产生活性氧族(reactive oxygen species,ROS),导致细胞损伤或免疫抑制,还能增强UVB的损伤作用。但也有研究表明,UVA照射不会产生免疫抑制,它可通过诱导血红素氧合酶1(HO-1)的表达减轻UVB照射引起的免疫抑制效应,从而对细胞产生保护作用。由于UVA照射引起的损伤或保护作用尚存在很大争议,本文主要结合近年来的相关研究,概括了适量UVA照射引起的免疫改变以及相关研究,总结了UVA照射诱导HO-1表达所发挥的细胞保护作用,尤其是HO-1的抗氧化和免疫保护作用,这将为深入了解UVA照射的反应机制和新型防晒剂的应用提供一定的指导意义。  相似文献   

18.
In order to study the sensitivity of two fish species, carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss), to the immunomodulatory effects of ultraviolet B (UVB) radiation, the fish were exposed to a single UVB dose of 50, 250, 500 or 1,000 mJ cm(-2). These species represent different phylogenetic groups of fish, and they differ also in their behaviour inhabitating often dark and turbid (carp) or clear and transparent waters (salmonids). Immune responses were studied on day 1 post-irradiation. Unexposed fish, and fish exposed to radiation depleted of UV wavelengths served as controls. UVB irradiation markedly enhanced the blood respiratory burst and cytotoxic activity in carp, but in the head kidney these parameters were significantly suppressed. Rainbow trout respiratory burst was affected only after exposure with the highest dose of UVB. Lymphopenia and granulophilia were noted in both fish blood after exposure. This study indicates that UVB irradiation modulates immune functions in both fish species studied, and that rainbow trout is more tolerant than carp against UVB. Fish are clearly adapted to the environmental UVB levels prevailing in their usual living habitats, but are also a target of undesired effects of UVB on immune functions whenever exposed to increased radiation levels.  相似文献   

19.
To mitigate melanoma risk, sunscreen use is widely advocated; yet, the ability of sunscreens to prevent melanoma remains controversial. Here, we test the tenet that sunscreens limit melanoma risk by blocking ultraviolet radiation (UV)‐induced DNA damage using murine models that recapitulate the genetics and spontaneous evolution of human melanoma. We find that a single, non‐erythematous dose of UV dramatically accelerates melanoma onset and increases tumor multiplicity in mice carrying an endogenous, melanocyte‐specific NRas61R allele. By contrast, transient UV exposure does not alter tumor onset in mice lacking p16INK4a or harboring an NRas12D allele. To block the rapid onset of melanoma cooperatively caused by UV and NRas61R, we employed a variety of aerosol sunscreens. While all sunscreens delayed melanoma formation and blocked UV‐induced DNA damage, differences in aerosol output (i.e., amount applied/cm2) caused variability in the cancer preventative efficacy of products with identical sunburn protection factor (SPF) ratings.  相似文献   

20.
Resveratrol is a promising agent for protecting human skin from UV radiation and to reduce the occurrence of cutaneous malignancies. We describe the photoprotective activity of six resveratrol analogues using the diffuse transmittance technique to determine the SPF and the protection against UVA radiation. The analogues presented a varied profile of photoprotection, the SPF ranging from 2 to 10 and the UVAPF from 0 to 9. Among the six compounds tested, the protection against UVB sunrays provided by compound B was more significant than the protection provided by resveratrol; compounds C, D, E and F show photoprotection similar to resveratrol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号