首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of selective protein degradation of membrane proteins in mitochondria has been studied employing a model protein that is subject to rapid proteolysis within the inner membrane. Protein degradation was mediated by two different proteases: (i) the m-AAA protease, a protease complex consisting of multiple copies of the ATP-dependent metallopeptidases Yta1Op (Afg3p) and Yta12p (Rcalp); and (ii) by Ymelp (Ytallp) that also is embedded in the inner membrane. Ymelp, highly homologous to Yta1Op and Yta12p, forms a complex of approximately 850 kDa in the inner membrane and exerts ATP-dependent metallopeptidase activity. While the m-AAA protease exposes catalytic sites to the mitochondrial matrix, Ymelp is active in the intermembrane space. The Ymelp complex was therefore termed 'i-AAA protease'. Analysis of the proteolytic fragments indicated cleavage of the model polypeptide at the inner and outer membrane surface and within the membrane-spanning domain. Thus, two AAA proteases with their catalytic sites on opposite membrane surfaces constitute a novel proteolytic system for the degradation of membrane proteins in mitochondria.  相似文献   

2.
Hereditary spastic paraplegia (HSP) is a genetically heterogeneous neurodegenerative disorder that is characterized by progressive and cell-specific axonal degeneration. An autosomal recessive form of the disease is caused by mutations in paraplegin, which is a conserved subunit of the ubiquitous and ATP-dependent m-AAA protease in mitochondria. The m-AAA protease carries out protein quality control in the inner membrane of the mitochondria, suggesting a pathogenic role of misfolded proteins in HSP. A recent study demonstrates that the m-AAA protease regulates ribosome assembly and translation within mitochondria by controlling proteolytic maturation of a ribosomal subunit. Here, we will discuss implications of the dual role of the m-AAA protease in protein activation and degradation for mitochondrial dysfunction and axonal degeneration.  相似文献   

3.
AAA proteases are membrane-bound ATP-dependent proteases that are present in eubacteria, mitochondria and chloroplasts and that can degrade membrane proteins. Recent evidence suggests dislocation of membrane-embedded substrates for proteolysis to occur in a hydrophilic environment; however, next to nothing is known about the mechanism of this process. Here, we have analysed the role of the membrane-spanning domains of Yta10 and Yta12, which are conserved subunits of the hetero-oligomeric m-AAA protease in the mitochondria of Saccharomyces cerevisiae. We demonstrate that the m-AAA protease retains proteolytic activity after deletion of the transmembrane segments of either Yta10 or Yta12. Although the mutant m-AAA protease is still capable of processing cytochrome c peroxidase and degrading a peripheral membrane protein, proteolysis of integral membrane proteins is impaired. We therefore propose that transmembrane segments of m-AAA protease subunits have a direct role in the dislocation of membrane-embedded substrates.  相似文献   

4.
Maturation of cytochrome c peroxidase (Ccp1) in mitochondria occurs by the subsequent action of two conserved proteases in the inner membrane: the m-AAA protease, an ATP-dependent protease degrading misfolded proteins and mediating protein processing, and the rhomboid protease Pcp1, an intramembrane cleaving peptidase. Neither the determinants preventing complete proteolysis of certain substrates by the m-AAA protease, nor the obligatory requirement of the m-AAA protease for rhomboid cleavage is currently understood. Here, we describe an intimate and unexpected functional interplay of both proteases. The m-AAA protease mediates the ATP-dependent membrane dislocation of Ccp1 independent of its proteolytic activity. It thereby ensures the correct positioning of Ccp1 within the membrane bilayer allowing intramembrane cleavage by rhomboid. Decreasing the hydrophobicity of the Ccp1 transmembrane segment facilitates its dislocation from the membrane and renders rhomboid cleavage m-AAA protease-independent. These findings reveal for the first time a non-proteolytic function of the m-AAA protease during mitochondrial biogenesis and rationalise the requirement of a preceding step for intramembrane cleavage by rhomboid.  相似文献   

5.
Functional integrity of mitochondria is critical for optimal cellular physiology. A suite of conserved mitochondrial proteases known as intramitochondrial quality control represents one of the mechanisms assuring normal mitochondrial function. We previously demonstrated that ATP-independent metalloprotease Oma1 mediates degradation of hypohemylated Cox1 subunit of cytochrome c oxidase and is active in cytochrome c oxidase-deficient mitochondria. Here we show that Oma1 is important for adaptive responses to various homeostatic insults and preservation of normal mitochondrial function under damage-eliciting conditions. Changes in membrane potential, oxidative stress, or chronic hyperpolarization lead to increased Oma1-mediated proteolysis. The stress-triggered induction of Oma1 proteolytic activity appears to be associated with conformational changes within the Oma1 homo-oligomeric complex, and these alterations likely involve C-terminal residues of the protease. Substitutions in the conserved C-terminal region of Oma1 impair its ability to form a labile proteolytically active complex in response to stress stimuli. We demonstrate that Oma1 genetically interacts with other inner membrane-bound quality control proteases. These findings indicate that yeast Oma1 is an important player in IM protein homeostasis and integrity by acting in concert with other intramitochondrial quality control components.  相似文献   

6.
Eukaryotic AAA proteases form a conserved family of membrane-embedded ATP-dependent proteases but have been analyzed functionally only in the yeast Saccharomyces cerevisiae. Here, we have identified two novel members of this protein family in the filamentous fungus Neurospora crassa, which were termed MAP-1 and IAP-1. Both proteins are localized to the inner membrane of mitochondria. They are part of two similar-sized high molecular mass complexes, but expose their catalytic sites to opposite membrane surfaces, namely, the intermembrane and the matrix space. Disruption of iap-1 by repeat-induced point mutation caused a slow growth phenotype at high temperature and stabilization of a misfolded inner membrane protein against degradation. IAP-1 could partially substitute for functions of its yeast homolog Yme1, demonstrating functional conservation. However, respiratory growth at 37 degrees C was not restored. Our results identify two components of the quality control system of the mitochondrial inner membrane in N. crassa and suggest that AAA proteases with catalytic sites exposed to opposite membrane surfaces are present in mitochondria of all eukaryotic cells.  相似文献   

7.
Prohibitins comprise a protein family in eukaryotic cells with potential roles in senescence and tumor suppression. Phb1p and Phb2p, members of the prohibitin family in Saccharomyces cerevisiae, have been implicated in the regulation of the replicative life span of the cells and in the maintenance of mitochondrial morphology. The functional activities of these proteins, however, have not been elucidated. We demonstrate here that prohibitins regulate the turnover of membrane proteins by the m-AAA protease, a conserved ATP-dependent protease in the inner membrane of mitochondria. The m-AAA protease is composed of the homologous subunits Yta10p (Afg3p) and Yta12p (Rca1p). Deletion of PHB1 or PHB2 impairs growth of Deltayta10 or Deltayta12 cells but does not affect cell growth in the presence of the m-AAA protease. A prohibitin complex with a native molecular mass of approximately 2 MDa containing Phb1p and Phb2p forms a supercomplex with the m-AAA protease. Proteolysis of nonassembled inner membrane proteins by the m-AAA protease is accelerated in mitochondria lacking Phb1p or Phb2p, indicating a negative regulatory effect of prohibitins on m-AAA protease activity. These results functionally link members of two conserved protein families in eukaryotes to the degradation of membrane proteins in mitochondria.  相似文献   

8.
m-AAA proteases exert dual functions in the mitochondrial inner membrane: they mediate the processing of specific regulatory proteins and ensure protein quality control degrading misfolded polypeptides to peptides. Loss of these activities leads to neuronal cell death in several neurodegenerative disorders. However, it is unclear how the m-AAA protease chooses between specific processing and complete degradation. A central and conserved function of the m-AAA protease is the processing of the ribosomal subunit MrpL32, which regulates ribosome biogenesis and the formation of respiratory complexes. Here, we demonstrate that the formation of a tightly folded domain harbouring a conserved CxxC-X(9)-CxxC sequence motif halts degradation initiated from the N-terminus and triggers the release of mature MrpL32. Oxidative stress impairs folding of MrpL32, resulting in its degradation by the m-AAA protease and decreased mitochondrial translation. Surprisingly, MrpL32 folding depends on its mitochondrial targeting sequence. Presequence-assisted folding of MrpL32 requires the complete import of the MrpL32 precursor before maturation occurs and therefore explains the need for post-translocational processing by the m-AAA protease rather than co-translocational cleavage by the general mitochondrial processing peptidase.  相似文献   

9.
The m-AAA protease, an ATP-dependent proteolytic complex in the mitochondrial inner membrane, controls protein quality and regulates ribosome assembly, thus exerting essential housekeeping functions within mitochondria. Mutations in the m-AAA protease subunit paraplegin cause axonal degeneration in hereditary spastic paraplegia (HSP), but the basis for the unexpected tissue specificity is not understood. Paraplegin assembles with homologous Afg3l2 subunits into hetero-oligomeric complexes which can substitute for yeast m-AAA proteases, demonstrating functional conservation. The function of a third paralogue, Afg3l1 expressed in mouse, is unknown. Here, we analyze the assembly of paraplegin into m-AAA complexes and monitor consequences of paraplegin deficiency in HSP fibroblasts and in a mouse model for HSP. Our findings reveal variability in the assembly of m-AAA proteases in mitochondria in different tissues. Homo-oligomeric Afg3l1 and Afg3l2 complexes and hetero-oligomeric assemblies of both proteins with paraplegin can be formed. Yeast complementation studies demonstrate the proteolytic activity of these assemblies. Paraplegin deficiency in HSP does not result in the loss of m-AAA protease activity in brain mitochondria. Rather, homo-oligomeric Afg3l2 complexes accumulate, and these complexes can substitute for housekeeping functions of paraplegin-containing m-AAA complexes. We therefore propose that the formation of m-AAA proteases with altered substrate specificities leads to axonal degeneration in HSP.  相似文献   

10.
The morphology of mitochondria in mammalian cells is regulated by proteolytic cleavage of OPA1, a dynamin-like GTPase of the mitochondrial inner membrane. The mitochondrial rhomboid protease PARL, and paraplegin, a subunit of the ATP-dependent m-AAA protease, were proposed to be involved in this process. Here, we characterized individual OPA1 isoforms by mass spectrometry, and we reconstituted their processing in yeast to identify proteases involved in OPA1 cleavage. The yeast homologue of OPA1, Mgm1, was processed both by PARL and its yeast homologue Pcp1. Neither of these rhomboid proteases cleaved OPA1. The formation of small OPA1 isoforms was impaired in yeast cells lacking the m-AAA protease subunits Yta10 and Yta12 and was restored upon expression of murine or human m-AAA proteases. OPA1 processing depended on the subunit composition of mammalian m-AAA proteases. Homo-oligomeric m-AAA protease complexes composed of murine Afg3l1, Afg3l2, or human AFG3L2 subunits cleaved OPA1 with higher efficiency than paraplegin-containing m-AAA proteases. OPA1 processing proceeded normally in murine cell lines lacking paraplegin or PARL. Our results provide evidence for different substrate specificities of m-AAA proteases composed of different subunits and reveal a striking evolutionary switch of proteases involved in the proteolytic processing of dynamin-like GTPases in mitochondria.  相似文献   

11.
Members of the Oxa1/YidC family are involved in the biogenesis of membrane proteins. In bacteria, YidC catalyzes the insertion and assembly of proteins of the inner membrane. Mitochondria of animals, fungi, and plants harbor two distant homologues of YidC, Oxa1 and Cox18/Oxa2. Oxa1 plays a pivotal role in the integration of mitochondrial translation products into the inner membrane of mitochondria. It contains a C-terminal ribosome-binding domain that physically interacts with mitochondrial ribosomes to facilitate the co-translational insertion of nascent membrane proteins. The molecular function of Cox18/Oxa2 is not well understood. Employing a functional complementation approach with mitochondria-targeted versions of YidC we show that YidC is able to functionally replace both Oxa1 and Cox18/Oxa2. However, to integrate mitochondrial translation products into the inner membrane of mitochondria, the ribosome-binding domain of Oxa1 has to be appended onto YidC. On the contrary, the fusion of the ribosome-binding domain onto YidC prevents its ability to complement COX18 mutants suggesting an indispensable post-translational activity of Cox18/Oxa2. Our observations suggest that during evolution of mitochondria from their bacterial ancestors the two descendents of YidC functionally segregated to perform two distinct activities, one co-translational and one post-translational.  相似文献   

12.
The inner membrane of mitochondria is one of the protein's richest cellular membranes. The biogenesis of the respiratory chain and ATP-synthase complexes present in this membrane is an intricate process requiring the coordinated function of various membrane-bound proteins including protein translocases and assembly factors. It is therefore not surprising that a distinct quality control system is present in this membrane that selectively removes nonassembled polypeptides and prevents their possibly deleterious accumulation in the membrane. The key components of this system are two AAA proteases, membrane-embedded ATP-dependent proteolytic complexes, which expose their catalytic sites at opposite membrane surfaces. Other components include the prohibitin complex with apparently chaperone-like properties and a regulatory function during proteolysis and a recently identified ATP-binding cassette (ABC) transporter that exports peptides derived from the degradation of membrane proteins from the matrix to the intermembrane space. All of these components are highly conserved during evolution and appear to be ubiquitously present in mitochondria of eukaryotic cells, indicating important cellular functions. This review will summarize our current understanding of this proteolytic system and, in particular, focus on the mechanisms guiding the degradation of membrane proteins by AAA proteases.  相似文献   

13.
YidC plays a role in the integration and assembly of many (if not all) Escherichia coli inner membrane proteins. Strikingly, YidC operates in two distinct pathways: one associated with the Sec translocon that also mediates protein translocation across the inner membrane and one independent from the Sec translocon. YidC is homologous to Alb3 and Oxa1 that function in the integration of proteins into the thylakoid membrane of chloroplasts and inner membrane of mitochondria, respectively. Here, we have expressed the conserved region of yeast Oxa1 in a conditional E. coli yidC mutant. We find that Oxa1 restores growth upon depletion of YidC. Data obtained from in vivo protease protection assays and in vitro cross-linking and folding assays suggest that Oxa1 complements the insertion of Sec-independent proteins but is unable to take over the Sec-associated function of YidC. Together, our data indicate that the Sec-independent function of YidC is conserved and essential for cell growth.  相似文献   

14.
The genome of mitochondria encodes a small number of very hydrophobic polypeptides that are inserted into the inner membrane in a cotranslational reaction. The molecular process by which mitochondrial ribosomes are recruited to the membrane is poorly understood. Here, we show that the inner membrane protein Mba1 binds to the large subunit of mitochondrial ribosomes. It thereby cooperates with the C-terminal ribosome-binding domain of Oxa1, which is a central component of the insertion machinery of the inner membrane. In the absence of both Mba1 and the C-terminus of Oxa1, mitochondrial translation products fail to be properly inserted into the inner membrane and serve as substrates of the matrix chaperone Hsp70. We propose that Mba1 functions as a ribosome receptor that cooperates with Oxa1 in the positioning of the ribosome exit site to the insertion machinery of the inner membrane.  相似文献   

15.
The inner mitochondrial membrane harbors a large number of proteins that display a wide range of topological arrangements. The majority of these proteins are encoded in the cell's nucleus, but a few polytopic proteins, all subunits of respiratory chain complexes are encoded by the mitochondrial genome. A number of distinct sorting mechanisms exist to direct these proteins into the mitochondrial inner membrane. One of these pathways involves the export of proteins from the matrix into the inner membrane and is used by both proteins synthesized within the mitochondria, as well as by a subset of nuclear encoded proteins. Prior to embarking on the export pathway, nuclear encoded proteins using this sorting route are initially imported into the mitochondrial matrix from the cytosol, their site of synthesis. Protein export from the matrix into the inner membrane bears similarities to Sec-independent protein export in bacteria and requires the function of the Oxa1 protein. Oxa1 is a component of a general protein insertion site in yeast mitochondrial inner membrane used by both nuclear and mitochondrial DNA encoded proteins. Oxa1 is a member of the conserved Oxa1/YidC/Alb3 protein family found throughout prokaryotes throughout eukaryotes (where it is found in mitochondria and chloroplasts). The evidence to demonstrate that the Oxa1/YidC/Alb3 protein family represents a novel evolutionarily conserved membrane insertion machinery is reviewed here.  相似文献   

16.
The membrane assembly of the respiratory complexes requires the membrane insertases Oxa1 in mitochondria and YidC in bacteria. Oxa1 is responsible for the insertion of the mitochondrial cytochrome c oxidase subunit II (CoxII). Here, we investigated whether YidC, the bacterial Oxa1 homolog, plays a crucial role in the assembly of the bacterial subunit II (CyoA) of cytochrome bo oxidase. CyoA spans the membrane twice and is made with a cleavable signal peptide. We find that translocation of the short N-terminal domain of CyoA is YidC-dependent. In contrast, both the SecA/SecYEG complex and YidC are required for translocation of the large C-terminal domain. By studying the N-terminal domain of CyoA alone, we find that translocation is unaffected when SecE is depleted, suggesting that the YidC insertase on its own catalyzes membrane insertion of the N-terminal region of CyoA. Strikingly, we find that the translocation of the N-terminal domain is a prerequisite for translocation of the C-terminal domain in the full-length CyoA protein because translocation of the large C-terminal domain alone in a truncated CyoA derivative was observed in the absence of YidC. This work shows that the distinct domains of CyoA have different translocation requirements (YidC only and Sec/YidC) and confirms that the membrane biogenesis of subunit II of cytochrome oxidase in bacteria and mitochondria have conserved features.  相似文献   

17.
Taking advantage of the unique topology of oxidase assembly 1 (Oxa1) protein, a mitochondrial inner membrane protein with N (intermembrane space)-C (matrix) orientation, we explored the usefulness of the protein as a marker for submitochondrial protein localization. Mammalian Oxa1 protein exhibited different proteolytic patterns depending on mitochondrial membrane integrity, and in mitochondria with a disrupted outer membrane and outer and inner membranes, the proteolytic patterns of Oxa1 protein were consistent with those of mitochondrial intermembrane space and matrix marker proteins, respectively, suggesting that Oxa1 protein, a single molecule, can serve as a versatile submitochondrial localization marker that doubles as a membrane integrity marker.  相似文献   

18.
Posttranslational targeting of the light-harvesting chlorophyll a,b-binding proteins depends on the function of the chloroplast signal recognition particle, its receptor cpFtsY, and the translocase Alb3. The thylakoid membrane protein Alb3 of Arabidopsis chloroplasts belongs to the evolutionarily conserved YidC/Oxa1/Alb3 protein family; the members of this family facilitate the insertion, folding, and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here, we analyzed the interaction sites of full-length Alb3 with the cpSRP pathway component cpSRP43 by using in vitro and in vivo studies. Bimolecular fluorescence complementation and Alb3 proteoliposome studies showed that the interaction of cpSRP43 is dependent on a binding domain in the C terminus of Alb3 as well as an additional membrane-embedded binding site in the fifth transmembrane domain (TMD5) of Alb3. The C-terminal binding domain was mapped to residues 374-388, and the binding domain within TMD5 was mapped to residues 314-318 located close to the luminal end of TMD5. A direct binding between cpSRP43 and these binding motifs was shown by pepspot analysis. Further studies using blue-native gel electrophoresis revealed that full-length Alb3 is able to form dimers. This finding and the identification of a membrane-embedded cpSRP43 binding site in Alb3 support a model in which cpSRP43 inserts into a dimeric Alb3 translocation pore during cpSRP-dependent delivery of light-harvesting chlorophyll a,b-binding proteins.  相似文献   

19.
The yeast mitochondrial Oxa1 protein is a member of the conserved Oxa1/YidC/Alb3 protein family involved in the membrane insertion of proteins. Oxa1 mediates the insertion of proteins (nuclearly and mitochondrially encoded) into the inner membrane. The mitochondrially encoded substrates interact directly with Oxa1 during their synthesis as nascent chains and in a manner that is supported by the associated ribosome. We have investigated if the Oxa1 complex interacts with the mitochondrial ribosome. Evidence to support a physical association between Oxa1 and the large ribosomal subunit is presented. Our data indicate that the matrix-exposed C-terminal region of Oxa1 plays an important role supporting the ribosomal-Oxa1 interaction. Truncation of this C-terminal segment compromises the ability of Oxa1 to support insertion of substrate proteins into the inner membrane. Oxa1 can be cross-linked to Mrp20, a component of the large ribosomal subunit. Mrp20 is homologous to L23, a subunit located next to the peptide exit tunnel of the ribosome. We propose that the interaction of Oxa1 with the ribosome serves to enhance a coupling of translation and membrane insertion events.  相似文献   

20.
Oxa1p, a nuclear-encoded protein of the mitochondrial inner membrane with five predicted transmembrane (TM) segments is synthesized as a precursor (pOxa1p) with an N-terminal presequence. It becomes imported in a process requiring the membrane potential, matrix ATP, mt-Hsp70 and the mitochondrial processing peptidase (MPP). After processing, the negatively charged N-terminus of Oxa1p (approximately 90 amino acid residues) is translocated back across the inner membrane into the intermembrane space and thereby attains its native N(out)-C(in) orientation. This export event is dependent on the membrane potential. Chimeric preproteins containing N-terminal stretches of increasing lengths of Oxa1p fused on mouse dehydrofolate reductase (DHFR) were imported into isolated mitochondria. In each case, their DHFR moieties crossed the inner membrane into the matrix. Thus Oxa1p apparently does not contain a stop transfer signal. Instead the TM segments are inserted into the membrane from the matrix side in a pairwise fashion. The sorting pathway of pOxa1p is suggested to combine the pathways of general import into the matrix with a bacterial-type export process. We postulate that at least two different sorting pathways exist in mitochondria for polytopic inner membrane proteins, the evolutionarily novel pathway for members of the ADP/ATP carrier family and a conserved Oxa1p-type pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号