首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Herbivores do not forage uniformly across landscapes, but select for patches of higher nutrition and lower predation risk. Macrotermes mounds contain higher concentrations of soil nutrients and support grasses of higher nutritional value than the surrounding savanna matrix, attracting mammalian grazers that preferentially forage on termite mound vegetation. However, little is known about the spatial extent of such termite influence on grazing patterns and how it might differ in time and space. We measured grazing intensity in three African savanna types differing in rainfall and foliar nutrients and predicted that the functional importance of mounds for grazing herbivores would increase as the difference in foliar nutrient levels between mound and savanna matrix grasses increases and the mounds become more attractive. We expected this to occur in nutrient‐poor areas and during the dry season when savanna matrix grass nutrient levels are lower. Tuft use and grass N and P content were measured along transects away from termite mounds, enabling calculation of the spatial extent of termite influence on mammalian grazing. Using termite mound densities estimated from airborne light detection and ranging (LiDAR), we further upscaled field‐based results to determine the percentage of the landscape influenced by termite activity. Grasses in close proximity to termite mounds were preferentially grazed at all sites and in both seasons, but the strength of mound influence varied between savanna types and seasons. In the wet season, mounds had a relatively larger effect on grazers at the landscape scale in the nutrient‐poor, wetter savanna, whereas in the dry season the pattern was reversed with more of the landscape influenced at the nutrient‐rich, driest site. Our results reveal that termite mounds enhance the value of savanna landscapes for herbivores, but that their functional importance varies across savanna types and seasons.  相似文献   

2.
Root foraging strategies and soil patchiness in a humid savanna   总被引:1,自引:0,他引:1  
In Lamto (Côte d'Ivoire), the savanna is a patchy environment as far as soil is concerned: tree clumps and termite mounds lead to higher nutrient contents than in the surrounding savanna. Mature Borassus aethiopum (Mart.) specimens are tall palm trees dominating the community, with aerial parts located out of these nutrient-rich patches.Palm root densities were compared under tree clumps and in the surrounding savanna, and were also sampled along transects between palm trees and nutrient-rich patches (two clumps and one mound). Palm root densities were far higher (up to 10 times) in the nitrogen-rich soil of both clumps and termite mounds than in the surrounding savanna. Evidence is given that palm trees are able to extend their root system as far as 20 m towards these nutrient-rich patches where they proliferate. These results point out a particular root foraging strategy, which is one of the first known for a woody perennial. They also provide new insights for understanding nitrogen cycling and savannas high rate of primary production.  相似文献   

3.
Mound fields are a common landscape throughout the world and much of the evidence for their origin has been of a circumstantial nature. It has been hypothesized that earth mounds emerge over grasslands by termite activity; alternatively, they might be formed after erosion. We tested whether a mound field in central Brazil was generated by termite activity or erosion. We used soil organic matter isotopic composition, soil chemical, physical and floristic composition to determine the origin of a mound field. If the mounds emerged by termite activity in an established grassland the soil organic matter below the mound should have the isotopic signature of C4 dominated grassland, which contrasts with savanna C3 + C4 signature. Additionally, soil traits should resemble those of the grassland. All markers indicate that the mounds were formed by erosion. The soil isotopic composition, chemical traits and texture below the mound resembled those of the savanna and not those of the grassland. Moreover, most of the species present in the mound were typical of savanna. Concrete evidence is provided that mound fields in the studied area were produced by erosion of a savanna ecosystem and not termite activity. The use of the techniques applied here would improve the assessments of whether analogous landscapes are of a biogenic nature or not.  相似文献   

4.
不同形成时间高原鼢鼠鼠丘土壤养分分配规律   总被引:5,自引:2,他引:3  
高原鼢鼠(Myospalax baileyi)作为青藏高原唯一营地下生活的鼠类,其造丘活动不仅能影响草地群落演替的方向和进程,而且对鼠丘土壤养分含量和分配造成空间异质性。关于不同形成时期的高原鼢鼠鼠丘养分含量及在垂直高度的分配规律研究报道尚少。基于此本研究以不同形成时期的鼢鼠鼠丘为研究对象,对鼠丘土壤养分含量及空间分配规律进行探讨。结果表明:随着鼠丘形成时间的推移,土壤养分总体表现为:1年鼠丘多年鼠丘对照区;与非鼠丘区相比,随着土壤土层增加,土壤养分未呈现规律性的变化。其中,土壤全氮和速效氮含量表现为1年鼠丘3年鼠丘5年鼠丘对照区;0—10cm土壤全磷和速效磷含量变化总体表现为多年鼠丘1年鼠丘对照区,10—30cm土层1年鼠丘土壤中全磷和速效磷含量最高。土壤速效钾和有机质含量随着鼠丘形成时间推移总体表现为:1年鼠丘5年鼠丘3年鼠丘;其中在10—30cm土层,1年鼠丘速效钾和有机质含量显著高于多年鼠丘和对照区。由此可见,高原鼢鼠造丘活动能显著改变土壤养分分配格局,短期内形成养分富集的肥力岛,为鼠丘土壤种子库中种子的萌发和植被生长提供必需的养分保证。  相似文献   

5.
Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant community assemblage may be a general property of mound building termites.  相似文献   

6.
African savanna termite mounds function as nutrient‐rich foraging hotspots for different herbivore species, but little is known about their effects on the interaction between domestic and wild herbivores. Understanding such effects is important for better management of these herbivore guilds in landscapes where they share habitats. Working in a central Kenyan savanna ecosystem, we compared selection of termite mound patches by cattle between areas cattle accessed exclusively and areas they shared with wild herbivores. Termite mound selection index was significantly lower in the shared areas than in areas cattle accessed exclusively. Furthermore, cattle used termite mounds in proportion to their availability when they were the only herbivores present, but used them less than their availability when they shared foraging areas with wild herbivores. These patterns were associated with reduced herbage cover on termite mounds in the shared foraging areas, partly indicating that cattle and wild herbivores compete for termite mound forage. However, reduced selection of termite mound patches was also reinforced by higher leafiness of Brachiaria lachnantha (the principal cattle diet forage species) off termite mounds in shared than in unshared areas. Taken together, these findings suggest that during wet periods, cattle can overcome competition for termite mounds by taking advantage of wildlife‐mediated increased forage leafiness in the matrix surrounding termite mounds. However, this advantage is likely to dissipate during dry periods when forage conditions deteriorate across the landscape and the importance of termite mounds as nutrient hotspots increases for both cattle and wild herbivores. Therefore, we suggest that those managing for both livestock production and wildlife conservation in such savanna landscapes should adopt grazing strategies that could lessen competition for forage on termite mounds, such as strategically decreasing stock numbers during dry periods.  相似文献   

7.
Fine-scale spatial heterogeneity influences biodiversity and ecosystem productivity at many scales. In savanna systems, Macrotermes termites, through forming spatially explicit mounds with unique woody plant assemblages, emerge as important sources of such heterogeneity. Despite a growing consensus regarding the importance of functional diversity (FD) to ecosystem processes, no study has quantified how termite mounds affect woody plant FD. We address whether termite mounds alter the distribution of functional traits, and increase FD of woody plant communities within Africa’s largest savanna woodland, the 2.7 million km2 miombo system. Using plant traits that change according to soil resources (for example, water and nutrients), and disturbance (for example, fire and elephant herbivory), we identified response functional groups and compared relative representation of these groups between mound and matrix habitats. We also asked whether mound and matrix habitats differed in their contribution to FD within the system. Although species representing most functional groups were found in both mound and matrix habitats, relative abundance of functional groups differed between mound and matrix. Mound plant assemblages had greater response diversity to soil resources than matrix plots, but there was no difference in response diversity to disturbance. High trait values on mounds included tree height, leaf nitrogen, phosphorus, and palatability. Species with root ectomycorrhizae dominated the matrix. In conclusion, these small patches of nutrient-enriched substrate emerge as drivers of FD in above-ground woody plant communities.  相似文献   

8.
We examined the influence of gas exchange on the architectureof termite mounds. In Comoé National Park (Côted'Ivoire), Macrotermes bellicosus builds, as an adaptation toambient temperature conditions, differently shaped mounds inthe shrub savanna and the gallery forest. Previous studies suggestedthat there might be a constraint that limits the degree of thermalinsulation of the interior (i.e., nest) of the mounds in environmentswith relatively low ambient temperatures. This factor causes,in proximate terms, suboptimal low nest temperatures and ultimatelyleads to reduced reproductive success in the gallery forest.In this study, we examined whether the necessity for gas exchangemight constrain mound architecture. We measured CO2 concentrationsin the air channels of mounds in different habitats and undermanipulated temperature regimes. During both the dry and therainy season we found higher CO2 concentrations in mounds ofthe gallery forest than in mounds of the savanna. Additional measurementsin forest mounds, architecturally resembling those of the savanna dueto an experimental increase in ambient temperatures, revealedlower CO2 concentrations than unmanipulated mounds in this habitat. Generally,concentrations were higher during the rainy season comparedto the dry season and lower during day than during night. Summarizingthese results we present a model that illustrates this trade-offbetween thermoregulation and gas exchange under different temperatureregimes. Both factors together result in different mound architecturesunder different environmental temperatures and may finally limitthe distribution of this species.  相似文献   

9.
Ventilation of termite mounds: new results require a new model   总被引:2,自引:0,他引:2  
In 1955, Lüscher proposed a ventilation mechanism forcathedral-shaped termite mounds to exchange respiratory gases. This mechanism was generally accepted, although it had neverbeen tested critically. We tested this mechanism by investigatingtemperatures, CO2 concentrations, and air currents in and aroundtwo types of Macrotermes bellicosus mounds: cathedral-shapedmounds with many ridges and thin walls located in the savannaand dome-shaped mounds without ridges and with thick wallsin the forest. These two mound shapes have two different mechanismsof ventilation, depending on the environmental temperature.In the savanna during the day, sun heats the air in the peripheralair channels inside the ridges of the mound above the centralnest temperatures and produces a temperature gradient in theperipheral air channels with decreased temperatures at thetop of the mound. This temperature gradient leads to convectioncurrents with air rising inside the air channels of the ridgesto the top of the mound, meanwhile exchanging CO2. In contrast,in the savanna during the night and generally in the forest,the temperatures inside the air channels are lower than thoseof the central nest, and no air currents rising upward insidethe air channels were detected. The CO2 concentrations in theair channels of savanna mounds at night and forest mounds ingeneral were higher than during the day in the savanna. Therefore,our data do not support Lüscher's proposed mechanism.  相似文献   

10.
The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites (Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 m). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2–20 m fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

11.
Bowé (hardened ferricrete soils formed by erosion, drought or deforestation) are often associated with termite mounds, but little is known about these mounds and their role in the restoration of soils and plant biodiversity on bowé. This study examined termite mounds on bowé and their effects on soil depth and plant richness. Sixty-four sampling plots were laid out randomly on bowé sites with mounds and on adjacent bowé sites without mounds. The height and circumference of each mound were measured. Species inventories were made and soil depth measured in each plot. Linear mixed effects and generalised mixed effects models with Poisson error distribution were used to assess the variation in soil depth and plant species richness in mound and nonmound microsites. Two types of mounds (small vs. large) associated with different termite species were observed on bowé, with the small mounds being most common. Plots with either large or small mounds had deeper soils and higher plant richness than the adjacent plots without mounds. Conservation of termite mounds is important for restoring soils and plant richness on bowé, and termite mounds should be taken into consideration in biodiversity and soil management strategies for bowé.  相似文献   

12.
Both termites and large mammalian herbivores (LMH) are savanna ecosystem engineers that have profound impacts on ecosystem structure and function. Both of these savanna engineers modulate many common and shared dietary resources such as woody and herbaceous plant biomass, yet few studies have addressed how they impact one another. In particular, it is unclear how herbivores may influence the abundance of long‐lived termite mounds via changes in termite dietary resources such as woody and herbaceous biomass. While it has long been assumed that abundance and areal cover of termite mounds in the landscape remain relatively stable, most data are observational, and few experiments have tested how termite mound patterns may respond to biotic factors such as changes in large herbivore communities. Here, we use a broad tree density gradient and two landscape‐scale experimental manipulations—the first a multi‐guild large herbivore exclosure experiment (20 years after establishment) and the second a tree removal experiment (8 years after establishment)—to demonstrate that patterns in Odontotermes termite mound abundance and cover are unexpectedly dynamic. Termite mound abundance, but areal cover not significantly, is positively associated with experimentally controlled presence of cattle, but not wild mesoherbivores (15–1,000 kg) or megaherbivores (elephants and giraffes). Herbaceous productivity and tree density, termite dietary resources that are significantly affected by different LMH treatments, are both positive predictors of termite mound abundance. Experimental reductions of tree densities are associated with lower abundances of termite mounds. These results reveal a richly interacting web of relationships among multiple savanna ecosystem engineers and suggest that termite mound abundance and areal cover are intimately tied to herbivore‐driven resource availability.  相似文献   

13.
Our understanding of carbon (C) dynamics within savannas is very limited, especially how source/sink dynamics are influenced by the resident biota. Previous measurements of epigeal termite mounds (termitaria), ubiquitous in many savannas, have shown that they are considerable point sources of soil carbon dioxide (CO2), whereas CO2 measurements collected outside the mounds were generally assumed to be independent of termite activity. However, no measurements were conducted along gradients away from the mounds to confirm this. We quantified daytime soil CO2 emissions (soil respiration) along gradients from the center to 20?m from the mound edge in Serengeti National Park, and measured soil temperature/moisture, macro-invertebrate abundance, and vegetation height as variables potentially influencing these emissions. Further, we quantified how far into the savanna termitaria impact CO2 emissions. As in other studies, we found the highest soil CO2 fluxes at the termitaria-center and considerably lower fluxes in the surrounding savanna. Macro-invertebrate abundance was associated with the differences in emissions measured, whereas the other variables were not. The analysis of spatial autocorrelation revealed significantly lower fluxes between the termitaria edge and up to 9?m from the edge compared to the values measured at the termitaria-center and between 10 and 20?m from the termitaria edge. When extrapolating the emissions across the landscape our results suggest that the lower CO2 emissions found between the edge and 9?m fully compensate for the high fluxes measured at the termitaria center. Consequently, our findings provide evidence that termitaria might influence the savanna C source-sink dynamics differently than previously thought.  相似文献   

14.
Termite mounds contribute to the spatial heterogeneity of ecological processes in many savannas, but the underlying patterns and determinants of mound distributions remain poorly understood. Using the Carnegie Airborne Observatory (CAO), we mapped the distribution of termite mounds across a rainfall gradient within a river catchment (~ 27 000 ha) of the Kruger National Park, South Africa. We assessed how different factors were associated with the distribution and height of termite mounds at three spatial scales: the entire catchment, among three broad vegetation types, and on individual hillslope crests. Abiotic factors such as the underlying geology and mean annual precipitation shaped mound densities at broad scales, while local hillslope morphology strongly influenced mound distribution at finer scales, emphasising the importance of spatial scale when assessing mound densities. Fire return period had no apparent association with mound densities or height. Mound density averaged 0.46 mounds ha?1, and exhibited a clustered pattern throughout the landscape, occurring at relatively high densities (up to 2 mounds ha?1) on crests, which are nutrient‐poor elements of the landscape. Mounds exhibited significant over‐dispersion (even spacing) at scales below 60 m so that evenly spaced aggregations of termite mounds are embedded within a landscape of varying mound densities. The tallest mounds were found in dry savanna (500 mm yr?1) and were positively correlated with mound density, suggesting that dry granitic savannas are ideal habitat for mound‐building termites. Mound activity status also varied significantly across the rainfall gradient, with a higher proportion of active (live) mounds in the drier sites. The differential spacing of mounds across landscapes provides essential nutrient hotspots in crest locations, potentially sustaining species that would otherwise not persist. The contribution to biodiversity and ecosystem functioning that mounds provide is not uniform throughout landscapes, but varies considerably with spatial scale and context.  相似文献   

15.
The role of soil modification by the mound-building termite,Drepanotermes tamminensis (Hill), was studied during 1991 in the Durokoppin Nature Reserve, Western Australia. Soil chemical parameters were quantified for ‘soils’ in nests and for surrounding soil in both a Wandoo (Eucalyptus capillosa) woodland and a Casuarina (Allocasuarina campestris) shrubland plot. All ‘soils’ in nests were more acidic than the surrounding soil within each study plot. Generally, nutrient levels in the nested soils were higher than the un-nested soil within each study plot and were also higher in the woodland than in the shrubland plot. Depending on the nuttient concerned, the nested soil contained between 0.3 and 21.9% of the total nutrient load per hectare within each study plot. The quantities of nutrients per hectare in termite mounds were higher in the woodland than in the shrubland plot. It is concluded that mounds of this species of termite form a significant bank of nutrients, although time for release of such nutrients depends on the degree of erosion and on the longevity of mounds.  相似文献   

16.
Vast areas of the African savanna landscapes are characterized by tree‐covered Macrotermes termite mounds embedded within a relatively open savanna matrix. In concert with termites, large herbivores are important determinants of savanna woody vegetation cover. The relative cover of woody species has considerable effects on savanna function. Despite the potentially important ecological relationships between termite mounds, woody plants, large herbivores, and birds, these associations have previously received surprisingly little attention. We experimentally studied the effects of termites and large herbivores on the avian community in Lake Mburo National Park, Uganda, where woody vegetation is essentially limited to termite mounds. Our experiment comprised of four treatments in nine replicates; unfenced termite mounds, fenced mounds (excluding large mammals), unfenced adjacent savanna, and fenced savanna. We recorded species identity, abundance, and behavior of all birds observed on these plots over a two‐month period, from late dry until wet season. Birds used termite mounds almost exclusively, with only 3.5% of observations occurring in the treeless intermound savanna matrix. Mean abundance and species richness of birds doubled on fenced (large herbivores excluded) compared to unfenced mounds. Feeding behavior increased when large mammals were excluded from mounds, both in absolute number of observed individuals, and relative to other behaviors. This study documents the fundamental positive impact of Macrotermes termites on bird abundance and diversity in an African savanna. Birds play crucial functional roles in savanna ecosystems, for example, by dispersing fruits or regulating herbivorous insect populations. Thus, the role of birds in savanna dynamics depends on the distribution and abundance of termite mounds.  相似文献   

17.
Summary Termite mound densities in typical guinea savanna, Detarium, and grassland (boval) habitats in northern guinea savanna were determined by random quadratting of 2–3 sites in each habitat (100, 10x10 m quadrats per habitat). Dominant species in guinea savanna were T. geminatus (46 mounds ha-1) and T. oeconomus (21 mounds ha-1), in Detarium T. geminatus (59 mounds ha-1) and C. curtatus (45 mounds ha-1) and in boval C. curtatus (72 mounds ha-1) and T. geminatus (22 mounds ha-1). Only C. curtatus densities and total densities differed significantly between sites within habitats, but all species differed significantly in abundance between habitats. The composition of each community was related to general environment but no particular environmental variable was shown to be a major determinant of termite distribution. Evidence for the limitation of termite populations was obtained from indirect evidence of competition between colonies in Detarium, and by experimental manipulation of fire regimes in the typical guinea savanna habitat. Harvester termites increased four-five fold over two years in fire-protected plots as a result of increased food supplies. Total termite densities in the fire-protected community equilibrated to the new population density (100 mounds ha-1) after only two-three years.  相似文献   

18.
This study investigated the influence of mound-building termites on soil particle dynamics on the land surface and in soil-forming processes by examining the amount of soil particles in mound structures of Macrotermes bellicosus in a highly weathered Ultisol of tropical savanna. Soil particle turnover via the mounds was estimated using particle stock data and soil turnover data from previous studies. A 4-ha study plot with six mounds of relatively uniform shape and size was investigated. Soil mass constituting the mounds was 6,166 ± 1,581 kg mound−1 within which the mound wall and nest body accounted for 5,002 ± 1,289 and 1,164 ± 293 kg, respectively. The mound wall contained a significantly larger amount of clay (252 ± 9.97 g kg−1) balanced with a lower sand content (676 ± 26.5 g kg−1) than in the adjacent surface (Ap1) horizon, (46.4 ± 12.8 g clay kg−1; 866 ± 83.2 g sand kg−1); the nest body had much higher clay content (559 ± 51.0 g kg−1) but less sand (285 ± 79.2 g kg−1) than the mound wall. As a result, the mounds of M. bellicosus accumulated clay of 2,874 ± 781 kg ha−1 (corresponding to 2.52% of clay stock in the Ap1 horizon) along with an estimated clay turnover rate of 169 kg ha−1 year−1. These findings suggest a positive feedback effect from termite mound-building activity on soil particle dynamics in tropical savanna ecosystems: M. bellicosus preferentially use subsoil material for mound construction, resulting in relocation of illuvial clay in the subsoil to the land surface where clay eluviation from the surface soil and its illuviation in the subsoil are major soil-forming processes.  相似文献   

19.
Termites are a highly uncertain component in the global source budgets of CH4 and CO2. Large seasonal variations in termite mound fluxes of CH4 and CO2 have been reported in tropical savannas but the reason for this is largely unknown. This paper investigated the processes that govern these seasonal variations in CH4 and CO2 fluxes from the mounds of Microcerotermes nervosus Hill (Termitidae), a common termite species in Australian tropical savannas. Fluxes of CH4 and CO2 of termite mounds were 3.5-fold greater in the wet season as compared to the dry season and were a direct function of termite biomass. Termite biomass in mound samples was tenfold greater in the wet season compared to the dry season. When expressed per unit termite biomass, termite fluxes were only 1.2 (CH4) and 1.4 (CO2)-fold greater in the wet season as compared to the dry season and could not explain the large seasonal variations in mound fluxes of CH4 and CO2. Seasonal variation in both gas diffusivity through mound walls and CH4 oxidation by mound material was negligible. These results highlight for the first time that seasonal termite population dynamics are the main driver for the observed seasonal differences in mound fluxes of CH4 and CO2. These findings highlight the need to combine measurements of gas fluxes from termite mounds with detailed studies of termite population dynamics to reduce the uncertainty in quantifying seasonal variations in termite mound fluxes of CH4 and CO2.  相似文献   

20.
Termites are pivotal ecosystem engineers in tropical and subtropical habitats, where they construct massive nests (‘mounds’) that substantially modify soil properties and promote nutrient cycling. Yet, little is known about the roles of termite nesting activity in regulating the spread of antimicrobial resistance (AMR), one of the major Global Health challenges. Here, we conducted a large-scale (> 1500 km) investigation in northern Australia and found distinct resistome profiles in termite mounds and bulk soils. By profiling a wide spectrum of ARGs, we found that the abundance and diversity of antibiotic resistance genes (ARGs) were significantly lower in termite mounds than in bulk soils (P < 0.001). The proportion of efflux pump ARGs was significantly lower in termite mound resistome than in bulk soil resistome (P < 0.001). The differences in resistome profiles between termite mounds and bulk soils may result from the changes in microbial interactions owing to the substantial increase in pH and nutrient availability induced by termite nesting activities. These findings advance our understanding of the profile of ARGs in termite mounds, which is a crucial step to evaluate the roles of soil faunal activity in regulating soil resistome under global environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号