首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Lymph node-derived endothelial cells were immortalized by infection with SV40 virus and subclones expressing the marker MECA 325 specific for high-endothelial venules (HEV) were selected. These transformed mouse endothelial (TME-) cell lines grow permanently without requirement for special growth factors. Staining of the selected clones with endothelium-specific antibodies and with anti-von Willebrand factor antiserum and uptake of acetylated low-density lipoprotein provide evidence for their endothelial origin. The vascular addressins identified by mAbs MECA 79 and MECA 367 on HEV are not detectable, indicating that the phenotype of the cells differs from that of HEV-type endothelium. The TME cells display a constitutive capacity to bind lymphocytes. An additional binding component is induced by treatment of the TME cells with TNF alpha. Antibodies against the homing receptor LECAM-1 (lectin-related leucocyte-endothelial cell adhesion molecule 1), alpha 4-integrins, vascular addressins, LFA-1, or ICAM-1 known to block lymphocyte interaction with particular types of HEV were unable to inhibit the basal adhesion to TME cells, indicating that a further binding mechanism in mice is displayed by this cell type. The adhesion component induced by TNF alpha is mediated by alpha 4-integrins since enhanced binding could be blocked by an antibody against mouse alpha 4 (lymphocyte-Peyer's patch adhesion molecule 1/2). TME cell lines therefore seem to be a useful model for the dissection and analysis of hitherto poorly characterized murine lymphocyte/endothelial cell interaction mechanisms.  相似文献   

2.
Lymphocytes from the blood home to secondary lymphoid tissues through a process of tethering, rolling, firm adhesion and transmigration. Tethering and rolling of lymphocytes is mediated by the interaction of L-selectin on lymphocytes with sulphated ligands expressed by the specialized endothelial cells of high endothelial venules (HEVs). The sulphate-dependent monoclonal antibody MECA79 stains HEVs in peripheral lymph nodes and recognizes the complex of HEV ligands for L-selectin termed peripheral node addressin. High endothelial cell GlcNAc-6-sulphotransferase/L-selectin ligand sulphotransferase is a HEV-expressed sulphotransferase that contributes to the formation of the MECA79 epitope and L-selectin ligands on lymph node HEVs. MECA79-reactive vessels are also common at sites of chronic inflammation, suggesting mechanistic parallels between lymphocyte homing and inflammatory trafficking.  相似文献   

3.
Migration of blood-borne lymphocytes into tissues involves a tightly orchestrated sequence of adhesion events. Adhesion molecules and chemokine receptors on the surface of circulating lymphocytes initiate contact with specialized endothelial cells under hemodynamic shear prior to extravasation across the vascular barrier into tissues. Lymphocyte–endothelial adhesion occurs preferentially in high endothelial venules (HEV) of peripheral lymphoid organs. The continuous recirculation of naïve and central memory lymphocytes across lymph node and Peyer’s patch HEV underlies immune surveillance and immune homeostasis. Lymphocyte–endothelial interactions are markedly enhanced in HEV-like vessels of extralymphoid organs during physiological responses associated with acute and chronic inflammation. Similar adhesive mechanisms must be invoked for efficient trafficking of immune effector cells to tumor sites in order for the immune system to have an impact on tumor progression. Here we discuss recent evidence for the role of fever-range thermal stress in promoting lymphocyte–endothelial adhesion and trafficking across HEV in peripheral lymphoid organs. Findings are also presented that support the hypothesis that lymphocyte–endothelial interactions are limited within tumor microenvironments. Further understanding of the molecular mechanisms that dynamically promote lymphocyte trafficking in HEV may provide the basis for novel approaches to improve recruitment of immune effector cells to tumor sites.  相似文献   

4.
Summary Two long-term cultured cell lines were established from BALB/c mouse axillary and cervical lymph nodes that exhibited a combination of functional, morphological, and phenotypic characteristics consistent only with high endothelial venule cells. Spleen lymphocytes selectively bound and migrated across the cell lines. On Matrigel, these cell lines formed tubules with lumens, a characteristic unique to endothelial cells. Morphologically the cells were 20–30 μm in diameter and exhibited contact inhibition. The cells were not myeloid in origin because they lacked sodium fluoride-inhibitable nonspecific esterase activity, myeloperoxidase activity, and F4/80 antigen. The cell line phenotypes were compared to high endothelial venule (HEV) cells in tissue sections. HEV cells in lymph node tissue sections expressed endoglin, PECAM-1, ICAM-1, VCAM-1, laminin, fibronectin, collagen IV, H2Kd, MECA 79, MECA 325, and vWF. The cell lines expressed endoglin, VCAM-1, fibronectin, and H2Kd. The cell line derived from cervical lymph nodes also expressed laminin and H2Dd. Neither cell line expressed collagen IV, IAd, ICAM-1, ICAM-2, dendritic cell antigen, or PECAM-1. They also did not express MECA antigens or intracellular vWF, consistent with reports of many cultured endothelial cells. To further substantiate cell line identification, antiserum generated against the cell lines bound specifically to HEV cells in frozen lymph node tissue sections and to both of the lymph node-derived cell lines but not control cell lines. Thus, the lymph node derived-cell lines expressed molecules found on HEV cellsin vivo and most importantly retained the functions of tubule formation, lymphocyte adhesion, and promotion of lymphocyte migration.  相似文献   

5.
Tissue-specific interactions with specialized high endothelial venules (HEV) direct the homing of lymphocytes from the blood into peripheral lymph nodes, mucosal lymphoid organs, and tissue sites of chronic inflammation. These interactions have been demonstrated in all mammalian species examined and thus appear highly conserved. To assess the degree of evolutionary divergence in lymphocyte-HEV recognition mechanisms, we have studied the ability of lymphocytes to interact with HEV across species barriers. By using an in vitro assay of lymphocyte binding to HEV in frozen sections of lymphoid tissues, we confirm that mouse, guinea pig, and human lymphocytes bind to xenogeneic as well as homologous HEV. In addition, we show that mouse and human lymphoid cell lines that bind selectively to either peripheral lymph node or mucosal vessels (Peyer's patches, appendix) in homologous lymphoid tissues exhibit the same organ specificity in binding to xenogeneic HEV. Furthermore, monoclonal antibodies that recognize lymphocyte "homing receptors" and block homologous lymphocyte binding to peripheral lymph node or to mucosal HEV, also inhibit lymphocyte interactions with xenogeneic HEV in a tissue-specific fashion. Similarly, anti-HEV antibodies against organ-specific mouse high endothelial cell "addressins" involved in lymphocyte homing to peripheral lymph node or mucosal lymphoid organs, not only block the adhesion of mouse lymphocytes but also of human lymphocytes to target mouse HEV. The results illustrate a remarkable degree of functional conservation of elements mediating these cell-cell recognition events involved in organ-specific lymphocyte homing.  相似文献   

6.
The molecular mechanisms by which pertussis toxin (PTX) inhibits lymphocyte homing to peripheral lymph nodes (PLN) remain poorly understood. PTX-treated lymphocytes express homing receptors, yet cannot extravasate into PLN in vivo. Methylation of PTX, a procedure known to inactivate the B-oligomer of the toxin, restored high endothelial venule (HEV) binding capacity. In vitro studies established that toxin exposure inhibited the accessory role of LFA-1 in HEV binding. In contrast, PTX-exposed lymphocytes exhibited normal MEL-14-mediated HEV binding. Analysis of membrane fluidity revealed a 20% decrease in fluorescence polarization in PTX-exposed lymphocytes. On the basis of the current experiments, we propose a "zipper" model of lymphocyte-HEV interaction, in which lateral mobility of adhesion receptors in the cell membrane toward a site of endothelial contact is necessary to maintain adhesion against the shear force due to blood flow. PTX inhibits these processes by decreasing membrane fluidity, and by altering accessory adhesion molecule function.  相似文献   

7.
Tissue-selective lymphocyte homing is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. These vessels, the post capillary high endothelial venules (HEV), are found in organized lymphoid tissues, and at sites of chronic inflammation. Lymphocytes bearing specific receptors, called homing receptors, recognize and adhere to their putative ligands on high endothelial cells, the vascular addressins. After adhesion, lymphocytes enter organized lymphoid tissues by migrating through the endothelial cell wall. Cells and/or soluble factors arriving in lymph nodes by way of the afferent lymph supply have been implicated in the maintenance of HEV morphology and efficient lymphocyte homing. In the study reported here, we assessed the influence of afferent lymphatic vessel interruption on lymph node composition, organization of cellular elements; and on expression of vascular addressins. At 1 wk after occlusion of afferent lymphatic vessels, HEV became flat walled and expression of the peripheral lymph node addressin disappeared from the luminal aspect of most vessels, while being retained on the abluminal side. In addition, an HEV-specific differentiation marker, defined by mAb MECA-325, was undetectable at 7-d postocclusion. In vivo homing studies revealed that these modified vessels support minimal lymphocyte traffic from the blood. After occlusion, we observed dramatic changes in lymphocyte populations and at 7-d postsurgery, lymph nodes were populated predominantly by cells lacking the peripheral lymph node homing receptor LECAM-1. In addition, effects on nonlymphoid cells were observed: subcapsular sinus macrophages, defined by mAb MOMA-1, disappeared; and interdigitating dendritic cells, defined by mAb NLDC-145, were dramatically reduced. These data reveal that functioning afferent lymphatics are centrally involved in maintaining normal lymph node homeostasis.  相似文献   

8.
9.
Adhesion of lymphocytes to high endothelial venule (HEV) cells is the first step in the migration of these cells from blood into lymph nodes and Peyer's patches (PP). In the present study, we isolated and cultured HEV cells from PP of the rat and assessed their capacity to interact with lymphocytes. Flow cytometric analysis with a rat HEV-specific mAb KJ-4 revealed that greater than 90% of the cultured cells were stained by the antibody. Furthermore, confluent monolayers of PP HEV cells retained the capacity to support the adhesion of lymphocytes from spleen, thoracic duct, and lymph nodes but not binding of immature cells from thymus and bone marrow, which are deficient in cells capable of binding to HEV in vivo. In addition, intraepithelial lymphocytes that preferentially migrated into mucosal lymphoid tissues were also enriched in cells that adhered to the endothelial monolayers. The binding process required energy, was calcium-dependent, and could be inhibited by cytochalasin D, trypsin, and mixed glycosidase. Interestingly, pretreatment of PP HEV cells with rTNF, IFN-gamma, or granulocyte-macrophage CSF significantly increased the endothelial adhesiveness for thoracic duct lymphocytes in a time- and dose-dependent manner. In contrast, stimulation of lymphocytes with phorbol ester or TNF resulted in the rapid modulation of the surface expression of the PP homing receptor and decrease in lymphocyte binding to normal or TNF-stimulated HEV cells. The adhesion of lymphocytes to normal or cytokine-stimulated HEV cells can be blocked by pretreatment of lymphocytes, but not HEV cells, with the PP homing receptor-specific 1B.2.6 antibody. Taken together, these experiments provide strong evidence that the interaction between lymphocytes and cultured HEV cells are mediated by adhesive mechanisms that regulate lymphocyte entry into PP in vivo and that cytokines can promote HEV adhesiveness for lymphocytes through increased expression of organ-specific ligands on HEV cells.  相似文献   

10.
Reactive arthritis can be triggered by inflammatory bowel diseases. We hypothesized that migration of mucosal immune cells from inflamed gut to joints could contribute to the development of reactive arthritis. Here we isolated gut-derived leukocytes from patients with Crohn's disease and ulcerative colitis. Using function-blocking mAbs and in vitro frozen section adhesion assays we studied whether these cells bind to synovial vessels and which molecules mediate the interaction. The results showed that mucosal leukocytes from inflammatory bowel diseased gut bind well to venules in synovial membrane. Small intestinal lymphocytes adhered to synovial vessels using multiple homing receptors and their corresponding endothelial ligands (CD18-ICAM-1, alpha(4)beta(7)/alpha(4)beta(1)-integrin-VCAM-1, L-selectin-peripheral lymph node addressins, and CD44). Of these, only ICAM-1 significantly supported binding of immunoblasts. In contrast, P-selectin glycoprotein ligand-1-P-selectin interaction accounted for practically all synovial adherence of mucosal macrophages. In addition, blocking of vascular adhesion protein-1 significantly inhibited binding of all these leukocyte subsets to joint vessels. We conclude that different leukocyte populations derived from inflamed gut bind avidly to synovial vessels using distinct repertoire of adhesion molecules, suggesting that their recirculation may contribute to the development of reactive arthritis in inflammatory bowel diseases.  相似文献   

11.
A variety of adhesion molecules regulate the traffic and tissue localization of lymphocytes in vivo by mediating their binding to vascular endothelial cells. The homing receptor gp90MEL-14 (gp90), also known as LECAM-1 or L-selectin, mediates the adhesion of lymphocytes to specialized high endothelial venules in lymph nodes (LN) and is the primary molecule regulating lymphocyte recirculation and homing to LN, whereas other adhesion molecules have a major role in the localization of lymphocytes in inflammatory sites. We used four-color flow cytometric analysis to examine the regulation of adhesion receptor expression on LN CD8 T cells responding to skin allografts in vivo. In normal mice, greater than 95% of LN CD8 T cells are gp90+, being either gp90+Pgp1- (Population (Pop.) 1 or gp90+Pgp-1+ (Pop.2). Allografting induces the down-regulation of gp90 and up-regulation of Pgp-1 on a subset of cells, resulting in the appearance of CD8+gp90-Pgp-1hi (Pop. 3) cells. Pop. 3 cells also express high levels of LFA-1, ICAM-1, and ICAM-2, and a subset of them are VLA-4 alpha-positive. Purified Pop. 3 cells have potent cytolytic activity directed against donor alloantigen, whereas no such activity is present in Pop. 1 or 2 cells. Correlating with this is the high granzyme activity in Pop. 3 cells. In addition, Pop. 3 lymphocytes, but not Pop. 1 or 2, secrete a large amount of IFN-gamma in response to Ag. Finally, the CD8 T cells that infiltrate sponge matrix allografts are markedly enriched for the Pop. 3 subset. These results show that, during the immune response to alloantigen in vivo, a small subset of CD8 T cells down-regulates the LN homing receptor while increasing the expression of other adhesion molecules, as they differentiate into highly active cytolytic T lymphocytes. Thus, the differential regulation of LN homing receptors and receptors for peripheral vascular endothelium provides a mechanism that would redirect the traffic of activated effector cells away from lymphoid tissue and to sites of Ag deposition, where they would participate in the inflammatory response.  相似文献   

12.
Endothelial cells play an essential role in immune responses by regulating the entry of leukocytes into lymphoid tissues and sites of inflammation. As an initial approach to analyzing endothelial cell specialization in relation to such immune function, we have produced monoclonal antibodies (MAB) against mouse lymph node endothelium. Three antibodies were selected: MECA-20, recognizing the endothelium of all blood vessels in lymphoid as well as non-lymphoid organs; MECA-217, which stains the endothelium lining large elastic arteries, but among small vessels is specific for post-capillary venules within lymphoid organs and tissues exposed to exogenous antigen, such as skin and uterus; and MECA-325, an antibody that demonstrates specificity for the specialized high endothelial venules (HEV) that control lymphocyte homing into lymph nodes and Peyer's patches. MECA-325 failed to stain vessels in any non-lymphoid organs tested. Immunoperoxidase studies of HEV in lymph node frozen sections, and of isolated high endothelial cells in suspensions, demonstrated that the antigens recognized by all three antibodies are expressed at the cell surface; those defined by MECA-20 and MECA-325 are also present in the cytoplasm. To study the regulation of the antigens defined by these MAB in relation to extra-lymphoid immune reactions, we assessed their expression in induced s.c. granulomas as a model for chronic inflammation. Small vessels in the granulomas were already stained by MECA-217 in the first days of development. In contrast MECA-325 detected postcapillary venules (which frequently displayed the morphologic characteristics of HEV) only from approximately 1 wk, in parallel with the development of a persistent mononuclear cell infiltrate including numerous lymphocytes. The selective appearance of the MECA-325 antigen on vascular endothelium supporting lymphocyte traffic in both lymphoid and extra-lymphoid sites suggests that this antigen may play an important role in the process of lymphocyte extravasation. The demonstration of lymphoid organ- and inflammation-specific microvascular antigens offers direct evidence for a complex specialization of endothelium in relation to immune stimuli, and supports the concept that microvascular differentiation may play an important role in local immune responses.  相似文献   

13.
In the present study we examine the functional distribution of the human endothelial L-selectin ligand, which determines the sites of extravasation of L-selectin-positive cells. A murine cell line transfected with human L-selectin adhered preferentially to the high endothelial venules (HEV) of human peripheral lymph nodes compared to the HEV of mucosal lymphoid tissues (mean of 0.83 compared to a mean of 0.07 cells per HEV respectively). In addition, an antibody against L-selectin differentially inhibited the adhesion of human lymphocytes to peripheral lymphoid tissue versus mucosal lymphoid tissue HEV (mean 41 and 5% inhibition respectively). Although both sulfoglucuronyl-containing glycolipids and sialyl-Lewis X have been proposed as endothelial ligands for L-selectin, an antibody against the former did not bind to peripheral lymph node endothelium, and an antibody against the latter did not block adhesion of L-selectin-expressing cells. The enzyme O-sialoglycoprotein endopeptidase caused up to an 84% reduction in L-selectin-dependent binding, indicating that sialylated glycoproteins containing O-linked glycans are essential for a large majority of adhesion via L-selectin.  相似文献   

14.
The FKBP-12-binding ligand FK506 has been successfully used to stimulate nerve regeneration and prevent the rejection of peripheral nerve allografts. The immunosuppressant rapamycin, another FKBP-12-binding ligand, stimulates axonal regeneration in vitro, but its influence on nerve regeneration in peripheral nerve isografts or allografts has not been studied. Sixty female inbred BALB/cJ mice were randomized into six tibial nerve transplant groups, including three isograft and three allograft (C57BL/6J) groups. Grafts were left untreated (groups I and II), treated with FK506 (groups III and IV), or treated with rapamycin (groups V and VI). Nerve regeneration was quantified in terms of histomorphometry and functional recovery, and immunosuppression was confirmed with mixed lymphocyte reactivity assays. Animals treated with FK506 and rapamycin were immunosuppressed and demonstrated significantly less immune cell proliferation relative to untreated recipient animals. Although every animal demonstrated some functional recovery during the study, animals receiving an untreated peripheral nerve allograft were slowest to recover. Isografts treated with FK506 but not rapamycin demonstrated significantly increased nerve regeneration. Nerve allografts in animals treated with FK506, and to a lesser extent rapamycin, however, both demonstrated significantly more nerve regeneration and increased nerve fiber widths relative to untreated controls. The authors suggest that rapamycin can facilitate regeneration through peripheral nerve allografts, but it is not a neuroregenerative agent in this in vivo model. Nerve regeneration in FK506-treated peripheral nerve isografts and allografts was superior to that found in rapamycin-treated animals. Rapamycin may have a role in the treatment of peripheral nerve allografts when used in combination with other medications, or in the setting of renal failure that often precludes the use of calcineurin inhibitors such as FK506.  相似文献   

15.
In a variety of lymphocyte interactions, lymphocyte function-associated antigen-1 (LFA-1) plays an important role as an accessory mechanism mediating cell adhesion. We tested the possibility that LFA-1 could also be involved in the specific binding of lymphocytes to high endothelial venules (HEV) during homing. Antibodies against LFA-1 but not against various other cell surface molecules (except the putative gp90 homing receptor defined by the MEL-14 antibody) were found to inhibit in vitro adherence of lymphocytes to HEV in frozen sections of lymph nodes. Binding of T cell lines to HEV was also inhibited by anti-LFA-1 antibody. Using sublines selected for differential expression of the MEL-14 antigen, MEL-14 high cells (which bind well to HEV) were less susceptible to inhibition by anti-LFA-1 than poor binders with low levels of the homing receptor, supporting the model of LFA-1 being an accessory mechanism strengthening weak interactions between cells. Parallel results were found in vivo where anti-LFA-1 antibodies reduced the migration of normal lymphocytes into lymph nodes and Peyer's patches by 40 to 60%. Localization in the lung, especially of activated lymphocytes, was also impaired, although to a lesser extent. These findings suggest that LFA-1 plays an accessory role in cellular interactions relevant for lymphocyte migration.  相似文献   

16.
The hallmark of acute allograft rejection is infiltration of the inflamed graft by circulating leukocytes. We studied the role of fractalkine (FKN) and its receptor, CX(3)CR1, in allograft rejection. FKN expression was negligible in nonrejecting cardiac isografts but was significantly enhanced in rejecting allografts. At early time points, FKN expression was particularly prominent on vascular tissues and endothelium. As rejection progressed, FKN expression was further increased, with prominent anti-FKN staining seen around vessels and on cardiac myocytes. To determine the capacity of FKN on endothelial cells to promote leukocyte adhesion, we performed adhesion assays with PBMC and monolayers of TNF-alpha-activated murine endothelial cells under low-shear conditions. Treatment with either anti-FKN or anti-CX(3)CR1-blocking Ab significantly inhibited PBMC binding, indicating that a large proportion of leukocyte binding to murine endothelium occurs via the FKN and CX(3)CR1 adhesion receptors. To determine the functional significance of FKN in rejection, we treated cardiac allograft recipients with daily injections of anti-CX(3)CR1 Ab. Treatment with the anti-CX(3)CR1 Ab significantly prolonged allograft survival from 7 +/- 1 to 49 +/- 30 days (p < 0.0008). These studies identify a critical role for FKN in the pathogenesis of acute rejection and suggest that FKN may be a useful therapeutic target in rejection.  相似文献   

17.
The tissue localization or "homing" of circulating lymphocytes is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. In peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches and appendix), and sites of chronic inflammation, for example, lymphocytes leave the blood by adhering to and migrating between those endothelial cells lining postcapillary high endothelial venules (HEV). Functional analyses of lymphocyte interactions with HEV have shown the lymphocytes can discriminate between HEV in different tissues, indicating that HEV express tissue-specific determinants or address signals for lymphocyte recognition. We recently described such a tissue-specific "vascular addressin" that is selectively expressed by endothelial cells supporting lymphocyte extravasation into mucosal tissues and that appears to be required for mucosa-specific lymphocyte homing (Streeter, P. R., E. L. Berg, B. N. Rouse, R. F. Bargatze, and E. C. Butcher. 1988. Nature (Lond.). 331:41-46). Here we document the existence and tissue-specific distribution of a distinct HEV differentiation antigen. Defined by monoclonal antibody MECA-79, this antigen is expressed at high levels on the lumenal surface and in the cytoplasm of HEV in peripheral lymph nodes. By contrast, although MECA-79 stains many HEV in the mucosal Peyer's patches, expression in most cases is restricted to the perivascular or ablumenal aspect of these venules. In the small intestine lamina propria, a mucosa-associated site that supports the extravasation of lymphocytes, venules do not stain with MECA-79. Finally, we demonstrate that MECA-79 blocks binding of both normal lymphocytes and a peripheral lymph node-specific lymphoma to peripheral lymph node HEV in vitro and that it also inhibits normal lymphocyte homing to peripheral lymph nodes in vivo without significantly influencing lymphocyte interactions with Peyer's patch HEV in vitro or in vivo. Thus, MECA-79 defines a novel vascular addressin involved in directing lymphocyte homing to peripheral lymph nodes.  相似文献   

18.
The human lymphocyte homing receptor, LAM-1, mediates the adhesion of lymphocytes to specialized high endothelial venules (HEV) of peripheral lymph nodes. We now report that LAM-1 is also a major mediator of leukocyte attachment to activated human endothelium. In a novel adhesion assay, LAM-1 was shown to mediate approximately 50% of the adhesion of both lymphocytes and neutrophils to TNF-activated human umbilical vein endothelial cells at 4 degrees C. The contribution of LAM-1 to leukocyte adhesion was only detectable when the assays were carried out under rotating (nonstatic) conditions, suggesting that LAM-1 is involved in the initial attachment of leukocytes to endothelium. In this assay at 37 degrees C, essentially all lymphocyte attachment to endothelium was mediated by LAM-1, VLA-4/VCAM-1, and the CD11/CD18 complex, whereas neutrophil attachment was mediated by LAM-1, endothelial-leukocyte adhesion molecule-1, and CD11/CD18. Thus, multiple receptors are necessary to promote optimal leukocyte adhesion to endothelium. LAM-1 also appeared to be involved in optimal neutrophil transendothelial migration using a videomicroscopic in vitro transmigration model system. LAM-1-dependent leukocyte adhesion required the induction and surface expression of a neuraminidase-sensitive molecule that was expressed for at least 24 h on activated endothelium. Expression of the LAM-1 ligand by endothelium was optimally induced by LPS and the proinflammatory cytokines TNF-alpha and IL-1 beta, whereas IFN-gamma and IL-4 induced lower levels of expression. The LAM-1 ligand on HEV and cytokine treated endothelium may be similar carbohydrate-containing molecules, because phosphomannan monoester core complex from yeast Hansenula hostii cell wall blocked binding of lymphocytes to both cell types, and identical epitopes on LAM-1-mediated lymphocyte attachment to HEV and activated endothelium. Thus, LAM-1 and its inducible endothelial ligand constitute a new pair of adhesion molecules that may regulate initial leukocyte/endothelial interactions at sites of inflammation.  相似文献   

19.
We wished to determine whether human lymphocytes, like their murine counterparts, show organ-specific interactions with high endothelial venules (HEV). Functional HEV-binding ability was measured by an in vitro assay of lymphocyte adherence to HEV in frozen sections of human lymphoid tissues which was adapted from rodent systems. It was found that human lymphocytes bind selectively to HEV and that, whereas mature T lymphocytes bind preferentially to HEV in peripheral lymph nodes and tonsils, B lymphocytes show preferential binding to HEV in GALT. Moreover, by analyzing the binding characteristics of T4+ and T8+ T cell populations, it was found that T8+ cells adhere preferentially to HEV in GALT and mesenteric lymph nodes and tonsil, and that T4+ cells bind slightly better to HEV in peripheral lymph nodes. The above findings indicate that organ--specific lymphocyte-endothelial cell recognition mechanisms exist also in humans, and suggest that these mechanisms play an important role in normal and pathologic lymphocyte traffic.  相似文献   

20.
L-selectin functions as an important adhesion molecule that mediates tethering and rolling of lymphocytes by binding to high endothelial venule (HEV)-expressed ligands during recirculation. Subsequent lymphocyte arrest and transmigration require activation through binding of HEV-decorated homeostatic chemokines such as secondary lymphoid tissue chemokine (SLC; CCL21) to its counterreceptor, CCR7. Importantly, L-selectin also functions as a signaling molecule. In this study, signaling induced by ligation of L-selectin using mAb or endothelial cell-expressed ligand significantly enhanced the chemotaxis of murine T cells and B cells to SLC but not to other homeostatic chemokines. Consistent with the expression levels of L-selectin in different lymphocyte subsets, L-selectin-mediated enhancement of chemotaxis to SLC was observed for all naive lymphocytes and effector/memory CD8(+) T cells, whereas only a subpopulation of effector/memory CD4(+) T cells responded. During in vivo mesenteric lymph node migration assays, the absence of L-selectin on lymphocytes significantly attenuated both their ability to migrate out of the HEV and their chemotaxis away from the vessel wall. Notably, ligation of L-selectin and/or CCR7 did not result in increased CCR7 expression levels, internalization, or re-expression. Pharmacologic inhibitor studies showed that L-selectin-mediated enhanced chemotaxis to SLC required intact intracellular kinase function. Furthermore, treatment of lymphocytes with the spleen tyrosine kinase family inhibitor piceatannol reduced their ability to migrate across the HEV in peripheral lymph nodes. Therefore, these results suggest that "cross-talk" in the signaling pathways initiated by L-selectin and CCR7 provides a novel mechanism for functional synergy between these two molecules during lymphocyte migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号