首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Summary Laboratory tests were made on the effect of NaNO3 or (NH4)2CO3 on the dynamics of humification in the soil of oat straw tagged with N15. The mixture was incubated for 112 days, at constant temperature and moisture conditions. It was found that NH4-N accelerated the straw humifications more than NO3-N. Humification started directly after the straw was introduced into the soil. N15 derived from straw consituted a part of the forming humic compounds. Already after 14 days of incubation, the N15 of straw was found in all fractions of humic compounds. Mineralization accompanied humification. The added inorganic-N accelerated not only straw humification, but also the mineralization of forming humic compounds. This is why the added inorganic-N had no influence on the content of humic compounds. The decisive factor in the increase of humic and fulvic acids in the soil, was the straw. The inorganic N added to the straw, had no influence on the quality of humic acids formed in the soil.  相似文献   

2.
Thomsen  Ingrid K. 《Plant and Soil》1993,148(2):193-201
A 5-month laboratory incubation experiment was conducted to study the immobilization-mineralization of N in soil to which dried or composted 15N labelled ryegrass (Lolium italicum L.) had been added. Cellulose was added to dried ryegrass to give a C/N ratio similar to that of composted ryegrass. Exchangeable NH4 + and NO3 , HCl-hydrolyzable N forms, microbial biomass N, NaOH-soluble and insoluble N were monitored during incubation. Dried ryegrass brought about a significant increase in total and labelled exchangeable NH4 +, while a rapid immobilization and a subsequent slow release of exchangeable NH4 + was observed in soil with composted ryegrass, together with a resistance to degradation of the labelled humic substances. Compounds synthesized during the composting process and resistant to microbial decomposition probably caused an increase in the amino-acid fraction of soil. These findings suggest that composting can reduce the risk of N losses.  相似文献   

3.
Summary The course of the CO2 evolution rates of soil samples has been followed continuously in the absence and in the presence of various organic compounds. After an incubation period of 300 hours at 13 and 20°C the CO2 evolution from pasture soil (containing 1.76% soil organic carbon) amounted to 0.13 and 0.44g CO2–C.g soil–1.h–1, respectively. For arable soil (containing 1.20% soil organic carbon) the rates amounted to 0.04 and 0.09 g CO2–C.g soil–1.h–1, respectively.At 20°C larger amounts of the organic substrates added to the soil supplied with 20 g NH4NO3–N.g soil–1 were lost as CO2 than at 13°C, indicating a higher efficiency of the growth of microorganisms at lower temperatures. In the absence of NH4NO3 the respiration rates were initially higher than in its presence, suggesting that a part of the soil microflora is inhibited by low concentrations of NH4NO3. The amounts of carbon lost were low for phenolcarboxylic acids with OH groups in the ortho position. The replacement of one of these groups by a methoxyl group resulted in a larger amount of the C lost as CO2. The replacement of the COOH group by a C=C–COOH group had a decreasing effect on the decomposition of the phenolic acids tested. The decomposition of vanillic acid,p-hydroxybenzoic acid, and of the benzoic acids with OH groups in the meta position was as complete as that of glucose, amino acids or casein. The decomposition of bacterial cells to CO2 was considerably less than that of glucose.No evidence could be obtained that the low percentage of substrate converted to CO2 at the time of maximal respiration rate was due to the decreasing diffusion rate of substrate to the microbial colonies in the soil during the consumption of substrate.  相似文献   

4.
In short-term water culture experiments with different 15N labeled ammonium or nitrate concentrations, citrus seedlings absorbed NH4 + at a higher rate than NO3 . Maximum NO3 uptake by the whole plant occurred at 120 mg L–1 NO3 -N, whereas NH4 + absorption was saturated at 240 mg L–1 NH4 +-N. 15NH4 + accumulated in roots and to a lesser degree in both leaves and stems. However, 15NO3 was mostly partitioned between leaves and roots.Adding increasing amounts of unlabeled NH4 + (15–60 mg L–1 N) to nutrient solutions containing 120 mg L–1 N as 15N labeled nitrate reduced 15NO3 uptake. Maximum inhibition of 15NO3 uptake was about 55% at 2.14 mM NH4 + (30 mg L–1 NH4 +-N) and it did not increase any further at higher NH4 + proportions.In a long-term experiment, the effects of concentration and source of added N (NO3 or NH4 +) on nutrient concentrations in leaves from plants grown in sand were evaluated. Leaf concentration of N, P, Mg, Fe and Cu were increased by NH4 + versus NO3 nutrition, whereas the reverse was true for Ca, K, Zn and Mn.The effects of different NO3 -N:NH4 +-N ratios (100:0, 75:25, 50:50, 25:75 and 0:100) at 120 mg L–1 total N on leaf nutrient concentrations, fruit yield and fruit characteristics were investigated in another long-term experiment with plants grown in sand cultures. Nitrogen concentrations in leaves were highest when plants were provided with either NO3 or NH4 + as a sole source of N. Lowest N concentration in leaves was found with a 75:25 NO3 -N/NH4 +-N ratio. With increasing proportions of NH4 + in the N supply, leaf nutrients such as P, Mg, Fe and Cu increased, whereas Ca, K, Mn and Zn decreased. Yield in number of fruits per tree was increased significantly by supplying all N as NH4 +, although fruit weight was reduced. The number of fruits per tree was lowest with the 75:25 NO3 -N:NH4 +-N ratio, but in this treatment fruits reached their highest weight. Rind thickness, juice acidity, and colour index of fruits decreased with increasing NH4 + in the N supply, whereas the % pulp and maturity index increased. Percent of juice in fruits and total soluble solids were only slightly affected by NO3 :NH4 + ratio.  相似文献   

5.
Past research strongly indicates the importance of amino acids in the N economy of the Arctic tundra, but little is known about the seasonal dynamics of amino acids in tundra soils. We repeatedly sampled soils from tussock, shrub, and wet sedge tundra communities in the summers of 2000 and 2001 and extracted them with water (H2O) and potassium sulfate (K2SO4) to determine the seasonal dynamics of soil amino acids, ammonium (NH4+), nitrate (NO3), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and phosphate (PO42–). In the H2O extractions mean concentrations of total free amino acids (TFAA) were higher than NH4+ in all soils but shrub. TFAA and NH4+ were highest in wet sedge and tussock soils and lowest in shrub soil. The most predominant amino acids were alanine, arginine, glycine, serine, and threonine. None of the highest amino acids were significantly different than NH4+ in any soil but shrub, in which NH4+ was significantly higher than all of the highest individual amino acids. Mean NO3 concentrations were not significantly different from mean TFAA and NH4+ concentrations in any soil but tussock, where NO3 was significantly higher than NH4+. In all soils amino acid and NH4+ concentrations dropped to barely detectable levels in the middle of July, suggesting intense competition for N at the height of the growing season. In all soils but tussock, amino acid and NH4+ concentrations rebounded in August as the end of the Arctic growing season approached and plant N demand decreased. This pattern suggests that low N concentrations in tundra soils at the height of the growing season are likely the result of an increase in soil N uptake associated with the peak in plant growth, either directly by roots or indirectly by microbes fueled by increased root C inputs in mid-July. As N availability decreased in July, PO42– concentrations in the K2SO4 extractions increased dramatically in all soils but shrub, where there was a comparable increase in PO42– later in the growing season. Previous research suggests that these increases in PO42– concentrations are due to the mineralization of organic phosphorus by phosphatase enzymes associated with soil microbes and plant roots, and that they may have been caused by an increase in organic P availability.  相似文献   

6.
The dynamics of inorganic N are important in soil, and this applies particularly to the saline–alkaline soils of the former lake Texcoco in Mexico with high pH and salinity where a forestation program was started in the 1970s. In soils of lake Texcoco, in Mexico, more than 50% of applied N could not be accounted for one day after application of 200 mg kg–1 soil along with glucose amendment. It was not clear whether this was due to abiotic or biotic processes, the form of inorganic N applied or the result of applying an easily decomposable substrate. We investigated this by adding glucose and 200 mg kg–1 soil as (NH4)2SO4-N or KNO3-N to sterilized and unsterilized soil. The changes in inorganic and ninhydrin N, microbial biomass C and production of CO2 were then monitored. Between the time of applying N and extraction with 0.5 M K2SO4, i.e., after ca 2 h, approximately 110 mg NH4 +-N kg–1 dry soil could not be accounted for in the unsterilized and sterilized soil and that remained so for the entire incubation in the sterilized soil. After 1 day this increased to 140 mg NH4 +-N kg–1 dry soil in the unsterilized control and 170 mg NH4 +-N kg–1 dry soil in C amended soil. Volatilization of NH3 accounted for 56 mg NH4 +-N kg–1 so the rest appeared to be adsorbed on the soil matrix. The NH3 volatilization and NH4 + fixed in the soil matrix remained constant over time and no oxidation to NO2 or NO3 had occurred, so unaccounted N in unsterilized soil was probably incorporated into the microbial biomass in excess of what was required for metabolic activity. The unaccounted N was ca 70 mg NO3 –N in nitrate amended soil after 3 days and 138 NO3 –N when glucose was additionally added. Losses through abiotic processes were absent as inferred from changes in sterilized soil and the aerobic incubation inhibited possible losses through denitrification. It was inferred that NO3 that could not be accounted for was taken up by micro-organisms in excess of what was required for metabolic activity.  相似文献   

7.
Summary A study of the effects of malathion and parathion applied at 10 and 50 g/g of soil on transformations of urea and (NH4)2SO4–N in a sandy loam showed that the insecticides retarded urea hydrolysis as well as nitrification of urea and (NH4)2SO4–N. At 50 parts/106 rate of the insecticides, inhibition of urea hydrolysis ranged from 44 to 61% after 0.5 week and from 7 to 21% after 3 weeks of application. The insecticides inhibited the conversion of NH4 + to NO2 without appreciably affecting the subsequent oxidation of NO2 to NO3 –N. This resulted in accumulation of higher amounts of NH4 +–N in soil samples treated with ammonium sulfate or urea N.The results suggest that transformations of urea and NH4 + fertilizers in soils may be influenced by the amount of organophosphorus insecticide present and this may affect plant nutrition and fertilizer use.  相似文献   

8.
Kirk  G.J.D. 《Plant and Soil》2001,232(1-2):129-134
The ways in which root–soil interactions can control nutrient acquisition by plants is illustrated by reference to the N nutrition of rice. Model calculations and experiments are used to assess how uptake is affected by root properties and N transport through the soil. Measurements of the kinetics of N absorption and assimilation and their regulation, and of interactions between NH4 + and NO3 nutrition, are described. It is shown that uptake of N from the soil–-as opposed to N in ricefield floodwater which can be absorbed very rapidly but is otherwise lost by gaseous emission–-will often be limited by root uptake properties. Rice roots are particularly efficient in absorbing and assimilating NO3 , and NH4 + absorption and assimilation are stimulated by NO3 . The uptake of NO3 formed in the rice rhizosphere by root-released O2 may be more important than previously thought, with beneficial consequences for rice growth. Other root-induced changes in the rice rhizosphere and their consequences are discussed.  相似文献   

9.
Erratic rainfall in rainfed lowlands and inadequate water supply in irrigated lowlands can results in alternate soil drying and flooding during a rice (Oryza sativa L.) cropping period. Effects of alternate soil drying and flooding on N loss by nitrification-denitrification have been inconsistent in previous field research. To determine the effects of water deficit and urea timing on soil NO3 and NH4, floodwater NO3, and N loss from added 15N-labeled urea, a field experiment was conducted for 2 yr on an Andaqueptic Haplaquoll in the Philippines. Water regimes were continuously flooded, not irrigated from 15 to 35 d after transplanting (DT), or not irrigated from 41 to 63 DT. The nitrogen treatments in factorial combination with water regimes were no applied N and 80 kg urea-N ha–1, either applied half basally and half at 37 DT or half at 11 DT and half at 65 DT. Water deficit at 15 to 35 DT and 41 to 63 DT, compared with continuous soil flooding, significantly reduced extractable NH4 in the top 30-cm soil layer and resulted in significant but small (<1.0 kg N ha–1) soil NO3 accumulations. Soil NO3, which accumulated during the water deficit, rapidly disappeared after reflooding. Water deficit at 15 to 35 DT, unlike that at 41 to 63 DT, increased the gaseous loss of added urea N as determined from unrecovered 15N in 15N balances. The results indicate that application of urea to young rice in saturated or flooded soil results in large, rapid losses of N (mean = 35% of applied N), presumably by NH3 volatilization. Subsequent soil drying and flooding during the vegetative growth phase can result in additional N loss (mean = 14% of applied N), presumably by nitrification-denitrification. This additional N loss due to soil drying and flooding decreases with increasing crop age, apparently because of increased competition by rice with soil microorganisms for NH4 and NO3.  相似文献   

10.
Owen  Jeffrey S.  Wang  Ming Kuang  Sun  Hai Lin  King  Hen Biau  Wang  Chung Ho  Chuang  Chin Fang 《Plant and Soil》2003,251(1):167-174
We used the buried bag incubation method to study temporal patterns of net N mineralization and net nitrification in soils at Ta-Ta-Chia forest in central Taiwan. The site included a grassland zone, (dominant vegetation consists of Yushania niitakayamensis and Miscanthus transmorrisonensis Hayata) and a forest zone (Tsuga chinensis var. formosana and Yushania niitakamensis). In the grassland, soil concentration NH4 + in the organic horizon (0.1–0.2 m) ranged from 1.0 to 12.4 mg N kg–1 soil and that of NO3 varied from 0.2 to 2.1 mg N kg–1 soil. In the forest zone, NH4 + concentration was between 2.8 and 25.0 mg N kg–1 soil and NO3 varied from 0.2 to 1.3 mg N kg–1 soil. There were lower soil NH4 + concentrations during the summer than other seasons. Net N mineralization was higher during the summer while net nitrification rates did not show a distinct seasonal pattern. In the grassland, net N mineralization and net nitrification rates were between –0.1 and 0.24 and from –0.04 to 0.04 mg N kg–1 soil day–1, respectively. In the forest zone, net N mineralization rates were between –0.03 and 0.45 mg N kg–1 soil day–1 and net nitrification rates were between –0.01 and 0.03 mg N kg–1 soil day–1. These differences likely result from differing vegetation communities (C3 versus C4 plant type) and soil characteristics.  相似文献   

11.
Summary Fertilizer/soil N balance of cropped and fallow soil has been studied in a pot experiment carried out with grey forest soil (southern part of Moscow region) at increasing rates of15N labelled ammonium sulfate (0; 8; 16; 32 mg N/100 g of soil). The fertilizer15N balance has been shown to depend upon its application rate and the presence of growing plants. Fertilizer N uptake efficiency was maximum (72.5%) and gaseous losses-minimum (12.5%) at the application rate of 16 mg N/100 g of soil. Fertilizer N losses from the fallow soil were 130–220% versus those from the cropped soil. At the application of fertilizer N the plant uptake of soil N was 170–240% and the amount of soil N as N–NH4 exchangeable + N–NO3 in fallow was 350–440% as compared to the control treatment without nitrogen (PK).After cropping without or with N fertilizer application at the rates of 8 and 32 mg N/100 g of soil, a positive nitrogen balance has been found which is likely due to nonsymbiotic (associative) N-fixation. It has been shown that biologically fixed nitrogen contributes to plant nutrition.  相似文献   

12.
Douglas fir seedlings were grown for two to three months in sand and soil cultures in a greenhouse to examine their growth response to nitrogen (N) source at different levels of pH and iron (Fe) supply. In the first two experiments nutrient solutions of known pH were automatically applied to the top of the sand cultures and allowed to run to waste from the bottom. Under these conditions seedlings made most growth on nitrate (NO3–N) under acid (pH4) conditions, but most growth on ammonium (NH4–N) under neutral (pH7) conditions. Calcium carbonate (CaCO3) was used to create a range of pH conditions (from 4.0 to 7.2) in a peat and sand artificial soil. Over the pH range 4 to 6 NH4–N or NO3+NH4–N produced larger seedlings than NO3–N alone, but above pH6 growth on all N sources was depressed. Chemical analysis showed that seedling Ca concentration had increased and Fe concentration had decreased with increase in CaCO3 application. Both Ca and Fe concentrations were higher in seedlings receiving NO3–N than in those receiving NH4 or NO3+NH4.In sub-irrigated sand cultures, Doughlas fir seedlings receiving NO3–N were shown to respond to additions of Fe chelate, but seedlings receiving NH4–N responded little to Fe chelate. At pH5 seedlings receiving NO3–N did not grow as big as seedlings receiving NH4–N in the absence of Fe chelate, but addition of Fe chelate resulted in NO3-fed seedlings growing larger than NH4-fed seedlings. The relationship between seedling Fe concentration and N nutrition is discussed.The relatively larger root dry weight and surface area of seedlings grown on NO3–N, as compared to NH4–N, in sand culture, was noted.  相似文献   

13.
Field experiments were carried out in 1987 on winter wheat crops grown on three types of soil. 15N-labelled urea, 15NH4NO3 or NH4 15NO3 (80 kg N ha-1) was applied at tillering. The soils (chalky soil, hydromorphic loamy soil, sandy clay soil) were chosen to obtain a range of nitrogen dynamics, particularly nitrification. Soil microbial N immobilization and crop N uptake were measured at five dates. Shortly after fertilizer application (0–26 days), the amount of N immobilized in soil were markedly higher with labelled urea or ammonium than that with nitrate in all soils. During the same period, crop 15N uptake occurred preferentially at the expense of nitrate. Nitrification differed little between soils, the rates were 2.0 to 4.7 kg N ha-1 day-1 at 9°C daily mean temperature. The differences in immobilization and uptake had almost disappeared at flowering and harvest. 15N recovery in soil and crop varied between 50 and 100%. Gaseous losses probably occurred by volatilization in the chalky soil and denitrification in the hydromorphic loamy soil. These losses affected the NH4 + and NO3 - pools differently and determined the partitioning of fertilizer-N between immobilization and absorption.  相似文献   

14.
Miller  Amy E.  Bowman  William D. 《Plant and Soil》2003,250(2):283-292
As an estimate of species-level differences in the capacity to take up different forms of N, we measured plant uptake of 15N-NH4 +, 15N-NO3 and 15N, [1]-13C glycine within a set of herbaceous species collected from three alpine community types. Plants grown from cuttings in the greenhouse showed similar growth responses to the three forms of N but varied in the capacity to take up NH4 +, NO3 and glycine. Glycine uptake ranged from approximately 42% to greater than 100% of NH4 + uptake; however, four out of nine species showed significantly greater uptake of either NH4 + or NO3 than of glycine. Relative concentrations of exchangeable N at the sites of plant collection did not correspond with patterns of N uptake among species; instead, species from the same community varied widely in the capacity to take up NH4 +, NO3 , and glycine, suggesting the potential for differentiation among species in resource (N) use.  相似文献   

15.
Summary The relationship between EUF extractable nutrients and conventional soil test extractable nutrients in the acid soils of Southern India on one hand and that between EUF values and tea productivity on the other are described. Close correlation exists between EUF-NO3–N at 20°C and CuSO4–Ag2SO4-extractable NO3–N (r=0.98***), EUF-Norg and Morgan's reagent extractable NH4–N (r=0.97***), total EUF-N and CuSO4–Ag2SO4-extractable NO3–N plus Morgan's reagent NH4–N (r=0.96***), EUF-P at 20°C and modified Bray II-P (r=0.93***) and EUF-P at 20°C plus that at 80°C and modified Bray II-P (r=0.91***). The EUF-K at 20°C shows close correlation with NH4OAc–K (r=0.80***), Ag-thiourea-K (r=0.86***) and Morgan's reagent-K (r=0.84***) whereas the EUF-K at 80°C shows close correlation with the difference in K contents of NH4OAc–K and Ag-thiourea-K (r=0.92***) or of NH4OAc–K and Morgan's reagent-K (r=0.93***) and fixed NH4–N (r=0.89***). EUF-Ca, EUF-Mg and EUF-Mn do not show any relationship with conventional soil test values. Tea productivity is strongly associated with EUF-N and EUF-P extracted at 20°C.  相似文献   

16.
Summary Soybean plants were grown in nutrient culture solutions containing 150 ppm of N either as an equal concentration of NH4 + or NO3 , or all NO3 . At the R2 stage of growth for some plants, the N form was changed to either all NO3 or all NH4 +, but at the same total N concentration as before. Highest seed yield was obtained with all NO3 over the entire growth period, the poorest when the N form was switched from an equal ratio of NH4 + and NO3 to all NH4 + at the R2 stage. Kjeldahl N concentrations in the plant leaves and seed were highest when NH4 + was part or all of the N source in the nutrient solution. These results may partially explain why the literature is inconsistent on the effect of added fertilizer N on soybean seed yield, and may pose a problem in using leaf Kjeldahl N concentration to determine plant N sufficiency.  相似文献   

17.
The effect of phosphate (PO4 +3) and pH in regulating nitrate (NO3) and ammonia (NH3 +) uptake by phytoplankton was investigated in two Oklahoma lakes using 15N tracers. Addition of PO4 +3 above ambient concentrations had a negligible effect on the rate of uptake of NO3 or NH3 +. Manipulation of pH of lake water had little effect on uptake of either NO3 or NH3 +. A correlation analysis suggested that NO3 is not used by phytoplankton when NH3 + concentrations exceed about 210 µg NH3 +-N(1)–1.  相似文献   

18.
The results of the experiments discussed here present changes in the chemical composition of xylem sap of tomato seedlings cultivated in hydroponics on media containing 5 mmol HCO3 and an N-source given as NO3 , NH4 + or these two forms in different proportions. The occurrence of free NH4 + in the xylem sap of NH4 +-seedlings and in NO3 -seedlings indicates that the process of N-assimilation was not only confined to roots. The application of HCO3 to the medium effected a decrease in the concentration of NH4 + in the xylem sap of NH4 +-seedlings, having no effect on changes in the concentration of NO3 or NH4 + in NO3 -seedlings. Malate, citrate, fumarate, and succinate were identified in the xylem sap. The concentration of carboxylates in NO3 -seedlings exceeded by about 50% that recorded in NH4 +-seedlings. The highest concentration of malate constituting from 80% to 93.5% of this fraction, was determined in this group of compounds. The enrichment of the medium with HCO3 ions induced an increase in the content of carboxylates, chiefly of malate. In these experimental conditions an increase in the malate concentration in the xylem sap of NO3 and NH4 +-seedlings reached relative values of 100% and 36%, respectively. The total concentration of amides and amino acids was about 2.6 times higher in the xylem sap of NH4 +-seedlings than in NO3 -seedlings. Amide glutamine was the main component of this fraction in xylem sap and its total concentration was about 3.3 times higher in NH4 +-seedlings than that determined in NO3 -seedlings. Glutamine, glutamate, aspargine, and aspartate constituted from 69% to 77% of this fraction. The concentration of the remaining amino acids varied from 0.6% to 7%. The enrichment of the medium with HCO3  ions also effected an increase in the concentration of amides and amino acids in the xylem sap by about 17% and 56% in the case of NO3 and NH4 +-seedlings, respectively, in comparison with the respective controls (without HCO3 ). Abbreviations: DAG – days after germination; DIC – dissolved inorganic carbon; GOGAT – glutamine:2-oxoglutarate aminotransferase; GS – glutamine synthetase; PAR – photosynthetically active radiation; PEPc – phosphoenolpyruvate carboxylase  相似文献   

19.
Summary The fate of 100 kg N ha–1 applied as15N-urea and its modified forms was followed in 4 successive field-grown wetland rice crops in a vertisol. The first wet season crop recovered about 27 to 36.6% of the applied N depending upon the N source. In subsequent seasons the average uptake was very small and it gradually decreased from 1.4 to 0.5 kg N ha–1 although about 18 to 20, 12 to 17 and 14 to 18 kg ha–1 residual fertilizer N was available in the root zone after harvest of first, second and third crops, respectively. The average uptake of the residual fertilizer N was only 7.6% in the second crop and it decreased to 4.5% in the third and to 3.2% in the fourth crop although all these crops were adequately fertilized with unlabelled urea. The basal application of neem coated urea was more effective in controlling the leaching loss of labelled NH4+NO3–N than split application of uncoated urea. In the first 3 seasons in which15N was detectable, the loss of fertilizer N through leaching as NH4+NO3–N amounted to 0.5 kg ha–1 from neem-coated urea, 1.5 kg from split urea and 4.1 kg from coal tar-coated urea. At the end of 4 crops, most of the labelled fertilizer N (about 69% on average) was located in the upper 0–20 cm soil layer showing very little movement beyond this depth. In the profile sampled upto 60 cm depth, totally about 13.8 kg labelled fertilizer N ha–1 from neem-coated urea, 12.7 kg from coal-tar coated urea, and 11.8 kg from split urea were recovered. The average recovery of labelled urea-N in crops and soil during the entire experimental period ranged between 42 and 51%. After correcting for leaching losses, the remaining 47 to 56% appeared to have been lost through ammonia volatilization and denitrification.  相似文献   

20.
Harrison  Una J.  Shew  H. D. 《Plant and Soil》2001,228(2):147-155
Black root rot of tobacco, caused by Thielaviopsis basicola, is generally severe at soil pH values >5.6 and suppressed under more acidic conditions (pH < 5.2). Soil acidifying fertilizers containing NH4–N are generally recommended for burley tobacco production in North Carolina, but the effects of N form and application rate on development of black root rot and on the population dynamics of T. basicola have not been determined. Greenhouse and laboratory studies were conducted to evaluate the effects of N form (NH4 + or NO3 ) and rate on pathogen and disease parameters at several initial soil pH levels. A moderately-conducive field soil, initial pH 4.7, was adjusted to a pH of 5.5 or 6.5 by the addition of CaOH2, then amended with the desired nitrogen form and rate. Pathogen populations were determined over time. In addition, spore production in extracts of roots from plants grown in the various nitrogen and pH treatments was determined. Finally, because tobacco responds to acidic soil conditions and exposure to NH4–N by accumulating high concentrations of the polyamine putrescine, the toxicity of putrescine on vegetative growth and reproduction of T. basicola was investigated. Low soil pH and high levels of NH4–N suppressed reproduction of T. basicola in soil and in root extract, while use of NO3–N and depletion of NH4–N resulted in rapid increases in populations of T. basicola. At 20 mM, putrescine inhibited hyphal growth by 60% and aleuriospore production by 98%. Fertilizers that reduced soil pH also reduced reproduction by T. basicola, and thus have potential for management of black root rot by suppressing populations of T. basicola over multiple years of crop production. The suppression of T. basicola and black root rot observed with NH4–N amendments may partially be due to development of an inhibitory environment in the root and not solely to changes in rhizosphere pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号