首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serine proteinase inhibitor, plasminogen activator inhibitor type-1 (PAI-1), binds to the adhesion protein vitronectin with high affinity at a site that is located directly adjacent to the vitronectin RGD integrin binding sequence. The binding of PAI-1 to vitronectin sterically blocks integrin access to this site and completely inhibits the binding of purified integrins to vitronectin; however, its inhibition of endothelial and smooth muscle cell adhesion to vitronectin is at most 50-75%. Because PAI-1 binds vitronectin with approximately 10-100-fold higher affinity than purified integrins, we have analyzed the mechanism whereby these cells are able to overcome this obstacle. Our studies exclude proteolytic removal of PAI-1 from vitronectin as the mechanism, and show instead that cell adhesion in the presence of PAI-1 is dependent on integrin-cytoskeleton engagement. Disrupting endothelial or smooth muscle cell actin polymerization and/or focal adhesion assembly reduces cell adhesion to vitronectin in the presence of PAI-1 to levels similar to that observed for the binding of purified integrins to vitronectin. Furthermore, endothelial cell, but not smooth muscle cell adhesion to vitronectin in the presence of PAI-1 requires both polymerized microtubules and actin, further demonstrating the importance of the cytoskeleton for integrin-mediated adhesion. Finally, we show that cell adhesion in the presence of PAI-1 leads to colocalization of PAI-1 with the integrins alphavbeta3 and alphavbeta5 at the cell-matrix interface.  相似文献   

2.
CCN1 (CYR61) is a matricellular inducer of angiogenesis essential for successful vascular development. Though devoid of the canonical RGD sequence motif recognized by some integrins, CCN1 binds to, and functions through integrin alphavbeta3 to promote pro-angiogenic activities in activated endothelial cells. In this study we identify a 20-residue sequence, V2 (NCKHQCTCIDGAVGCIPLCP), in domain II of CCN1 as a novel binding site for integrin alphavbeta3. Immobilized synthetic V2 peptide supports alphavbeta3-mediated cell adhesion; soluble V2 peptide inhibits endothelial cell adhesion to CCN1 and the homologous family members CCN2 (connective tissue growth factor, CTGF) or CCN3 (NOV) but not to collagen. These activities are obliterated by mutation of the aspartate residue in the V2 peptide to alanine. The corresponding D125A mutation in the context of the N-terminal half of CCN1 (domains I and II) greatly diminished direct solid phase binding to purified integrin alphavbeta3 and abolished alphavbeta3-mediated cell adhesion activity. Likewise, soluble full-length CCN1 with the D125A mutation is defective in binding purified alphavbeta3 and impaired in alphavbeta3-mediated pro-angiogenic activities in vascular endothelial cells, including stimulation of cell migration and enhancement of DNA synthesis. In contrast, immobilized full-length CCN1-D125A mutant binds alphavbeta3 and supports alphavbeta3-mediated cell adhesion similar to wild type CCN1. These results indicate that V2 is the primary alphavbeta3 binding site in soluble CCN1, whereas additional cryptic alphavbeta3 binding site(s) in the C-terminal half of CCN1 becomes exposed when the protein is immobilized. Together, these results identify a novel and functionally important binding site for integrin alphavbeta3 and provide a new approach for dissecting alphavbeta3-specific CCN1 functions both in cultured cells and in the organism.  相似文献   

3.
Collaborative role of various fibronectin-binding integrins (alpha5beta1, alphavbeta1 and alphavbeta6) as mediators of cell adhesion and migration on fibronectin was studied using cultured HaCaT keratinocytes. This cell line spontaneously expressed all three fibronectin-binding integrins. In addition, the expression of alphavbeta6 integrin was strongly and specifically upregulated by transforming growth factor-beta1 (TGFbeta1) whereas the amount of other integrins remained practically unchanged on the cell surface. Adhesion, spreading and motility of HaCaT keratinocytes on fibronectin were promoted by TGFbeta1. Based on antibody blocking experiments, both untreated and TGFbeta1-treated HaCaT cells used alphavbeta6 integrin as their main fibronectin receptor for cell spreading. In contrast to TGFbeta1-treated cells, the untreated cells also needed alpha5beta1 integrin for maximal cell spreading on fibronectin. Combinations of antibodies blocking both of these receptors totally prevented spreading of both untreated and TGFbeta1-treated cells. Haptotactic motility of individual HaCaT cells through fibronectin-coated membranes was again mainly dependent on alphavbeta6 integrin, while alphavbeta1 and alpha5beta1 integrins played a lesser role both in untreated and TGFbeta1-treated HaCaT cells. However, unlike haptotaxis, lateral migration of HaCaT cell sheet was mainly mediated by beta1 integrins, and alphavbeta6 integrin showed a minor role. The migration process appeared to involve a number of beta1 integrins that could adaptively replace each other when blocking antibodies were present. Thus, keratinocytes appear to use different fibronectin receptors for different functions, such as cell spreading, haptotaxis and lateral migration. The cells can also adapt to a situation where one receptor is unfunctional by switching to another receptor of the same ligand.  相似文献   

4.
Integrin alpha(V)beta(3) mediates diverse responses in vascular cells, ranging from cell adhesion, migration, and proliferation to uptake of adenoviruses. However, the extent to which alpha(V)beta(3) is regulated by changes in receptor conformation (affinity), receptor diffusion/clustering (avidity), or post-receptor events is unknown. Affinity regulation of the related integrin, alpha(IIb)beta(3), has been established using a monovalent ligand-mimetic antibody, PAC1 Fab. To determine the role of affinity modulation of alpha(V)beta(3), a novel monovalent ligand-mimetic antibody (WOW-1) was created by replacing the heavy chain hypervariable region 3 of PAC1 Fab with a single alpha(V) integrin-binding domain from multivalent adenovirus penton base. Both WOW-1 Fab and penton base bound selectively to activated alpha(V)beta(3), but not to alpha(IIb)beta(3), in receptor and cell binding assays. alpha(V)beta(3) affinity varied with the cell type. Unstimulated B-lymphoblastoid cells bound WOW-1 Fab poorly (apparent K(d) = 2.4 microM), but acute stimulation with phorbol 12-myristate 13-acetate increased receptor affinity >30-fold (K(d) = 80 nM), with no change in receptor number. In contrast, alpha(V)beta(3) in melanoma cells was constitutively active, but ligand binding could be suppressed by overexpression of beta(3) cytoplasmic tails. Up-regulation of alpha(V)beta(3) affinity had functional consequences in that it increased cell adhesion and spreading and promoted adenovirus-mediated gene transfer. These studies establish that alpha(V)beta(3) is subject to rapid regulated changes in affinity that influence the biological functions of this integrin.  相似文献   

5.
The expression of alphavbeta6 fibronectin/tenascin receptor integrin is induced in malignant transformation of oral epithelium. In this study, we demonstrate the contribution of alphavbeta6 as well as other fibronectin receptor integrins in squamous cell carcinoma (SCC) cell adhesion and migration. Of 11 SCC cell lines isolated from the head and neck area, 8 (73%) expressed alphavbeta6 integrin on the cell surface. Three cell lines were chosen for further functional experiments: 1 with relatively high, 1 with moderate, and 1 with minimal surface expression of alphavbeta6 integrin. In addition to alphavbeta6, all 3 cell lines expressed alpha5beta1 and alphavbeta1 fibronectin receptor integrins. Function-blocking experiments with inhibitory anti-integrin antibodies showed that all these three integrins were functional in SCC cell spreading on fibronectin. Integrin alphavbeta6, however, was not used as a primary but as an alternative fibronectin receptor by SCC cells, as the inhibitory anti-beta6 integrin antibody alone had no effect on spreading. In migration, however, alphavbeta6, alpha5beta1, and alphavbeta1 integrins were all used in cooperation. The presence of alphavbeta1 integrin in SCC cells is a novel finding as is its contribution to SCC cell migration. When one or two of these three receptors were blocked, the cells demonstrated an adaptive ability to remain migratory using integrins that were not targeted by antibodies. Utilization of a combination of receptors of different affinities may be beneficial for SCC cell migration versatility.  相似文献   

6.
Recent evidence demonstrates that interactions between different integrins that are present on the cell surface can strongly influence the adhesive function of individual receptors. In this report, we show that Chinese hamster ovary cells that express the integrin alphavbeta3 in the absence of alpha5beta1 demonstrate increased adhesion and migration on fibrinogen. Furthermore, alphavbeta3-mediated adhesion to fibrinogen is not augmented by the soluble agonist, MnCl2, suggesting that alphavbeta3 exists in a higher affinity state in these cells. De novo expression of wild-type alpha5beta1 negatively regulates alphavbeta3-mediated adhesion and migration. This effect is not seen with expression of a chimeric alpha5beta1 integrin in which the cytoplasmic portion of the alpha5 integrin subunit is replaced by the cytoplasmic portion of the alpha4 integrin. In addition, it does not require ligation of alpha5beta1 by fibronectin. Cells that express a constitutively active beta3 integrin that contains a point mutation in the conserved membrane proximal region of the cytoplasmic tail, D723R, are resistant to the effect of alpha5beta1 expression. These data provide additional evidence of "cross-talk" between the integrins alpha5beta1 and alphavbeta3, and support the idea that alpha5beta1 regulates alphavbeta3-mediated ligand binding. This provides a relevant biological mechanism whereby variations in alpha5beta1 expression in vivo may modulate activation of alphavbeta3 to influence its adhesive function.  相似文献   

7.
Fibronectin is an extracellular matrix protein with broad binding specificity to cell surface receptors, integrins. The tenth fibronectin type III domain (FNfn10) is a small, autonomous domain of fibronectin containing the RGE sequence that is directly involved in integrin binding. However, in isolation FNfn10 only weakly bind to integrins. We reasoned that high-affinity and high-specificity variants of FNfn10 to a particular integrin could be engineered by optimizing residues surrounding the integrin-binding RGD sequence in the flexible FG loop. Affinity maturation of FNfn10 to alphavbeta3 integrin, an integrin up-regulated in angiogenic endothelial cells and in some metastatic tumor cells, yielded alphavbeta3-binding FNfn10 mutants with a novel RGDWXE consensus sequence. We characterized one of the RGDWXE-modified clones, FNfn10-3JCLI4, as purified protein. FNfn10-3JCLI4 binds with high affinity and specificity to purified alphavbeta3 integrin. Alanine scanning mutagenesis suggested that both the tryptophan and glutamic acid residues following the RGD sequence are required for maximal affinity and specificity for alphavbeta3. FNfn10-3JCLI4 specifically stained alphavbeta3-positive cells as detected with flow cytometry and it inhibited alphavbeta3-dependent cell adhesion. As with the anti-alphavbeta3 antibody LM609, FNfn10-3JCLI4 can interfere with in vitro capillary formation. Taken together, these data show that FNfn10-3JCL14 is a specific, high-affinity alphavbeta3-binding protein that can inhibit alphavbeta3-dependent cellular processes similar to an anti-alphavbeta3 monoclonal antibody. These properties, combined with the small, monomeric, cysteine-free and highly stable structure of FNfn10-3JCLI4, may make this protein useful in future applications involving detection and targeting of alphavbeta3-positive cells.  相似文献   

8.
The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet alpha-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with alphavbeta3 on the surface of alphavbeta3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through alphavbeta3 integrin, and also through other integrins, such as alphavbeta5 and alpha5beta1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.  相似文献   

9.
Functional cooperation between integrins and growth factor receptors has been reported for several systems, one of which is the modulation of insulin signaling by alphavbeta3 integrin. Plasminogen activator inhibitor type-1 (PAI-1), competes with alphavbeta3 integrin for vitronectin (VN) binding. Here we report that PAI-1, in a VN-dependent manner, prevents the cooperation of alphavbeta3 integrin with insulin signaling in NIH3T3 fibroblasts, resulting in a decrease in insulin-induced protein kinase B (PKB) phosphorylation, vascular endothelial growth factor (VEGF) expression and cell migration. Insulin-induced HUVEC migration and angiotube formation was also enhanced in the presence of VN and this enhancement is inhibited by PAI-1. By using specific PAI-1 mutants with either VN binding or plasminogen activator (PA) inhibiting activities ablated, we have shown that the PAI-1-mediated interference with insulin signaling occurs through its direct interaction with VN, and not through its PA neutralizing activity. Moreover, using cells deficient for uPA receptor (uPAR) we have demonstrated that the inhibition of PAI-1 on insulin signaling is independent of uPAR-VN binding. These results constitute the first demonstration of the interaction of PAI-1 with the insulin response.  相似文献   

10.
Binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR/CD87) regulates cellular adhesion, migration, and tumor cell invasion. However, it is unclear how glycosyl phosphatidylinositol-anchored uPAR, which lacks a transmembrane structure, mediates signal transduction. It has been proposed that uPAR forms cis-interactions with integrins as an associated protein and thereby transduces proliferative or migratory signals to cells upon binding of uPA. We provide evidence that soluble uPAR (suPAR) specifically binds to integrins alpha4beta1, alpha6beta1, alpha9beta1, and alphavbeta3 on Chinese hamster ovary cells in a cation-dependent manner. Anti-integrin and anti-uPAR antibodies effectively block binding of suPAR to these integrins. Binding of suPAR to alpha4beta1 and alphavbeta3 is blocked by known soluble ligands and by the integrin mutations that inhibit ligand binding. These results suggest that uPAR is an integrin ligand rather than, or in addition to, an integrin-associated protein. In addition, we demonstrate that glycosyl phosphatidylinositol-anchored uPAR on the cell surface specifically binds to integrins on the apposing cells, suggesting that uPAR-integrin interaction may mediate cell-cell interaction (trans-interaction). These previously unrecognized uPAR-integrin interactions may allow uPAR to transduce signals through the engaged integrin without a hypothetical transmembrane adapter and may provide a potential therapeutic target for control of inflammation and cancer.  相似文献   

11.
betaig-h3 is an extracellular matrix protein that mediates adhesion and migration of several cell types through interaction with integrins. In the present study, we tested whether betaig-h3 mediates endothelial cell adhesion and migration, thereby regulating angiogenesis. In this study, we demonstrate that not only betaig-h3 itself but also all four fas-1 domains of betaig-h3 mediate endothelial cell adhesion and migration through interaction with the alphavbeta3 integrin. We found that the alphavbeta3 integrin-interacting motif of the four fas-1 domains of betaig-h3 is the same YH motif that we reported previously to interact with alphavbeta5 integrin. The YH peptide inhibited endothelial cell adhesion and migration in a dose-dependent manner. We demonstrate that the YH peptide has anti-angiogenic activity in vitro and in vivo using an endothelial cell tube formation assay and a Matrigel plug assay, respectively. Our results reveal that betaig-h3 bears alphavbeta3 integrin-interacting motifs that mediate endothelial cell adhesion and migration and, therefore, may regulate angiogenesis.  相似文献   

12.
The capacity of tumor cells to form metastatic foci correlates with their ability to interact with and migrate through endothelial cell layers. This process involves multiple adhesive interactions between tumor cells and the endothelium. Only little is known about the molecular nature of these interactions during extravasation of tumor cells. In human melanoma cells, the integrin alphavbeta3 is involved in transendothelial migration and its expression correlates with metastasis. However, many human melanoma cells do not express beta3 integrins. Therefore, it remained unclear how these cells undergo transendothelial migration. In this study we show that human melanoma cells with different metastatic potency, which do not express beta2 or beta3 integrins, express the VCAM-1 receptor alpha4beta1. VCAM-1 is up-regulated on activated endothelial cells and is known to promote transendothelial migration of leukocytes. Interestingly, despite comparable cell surface levels of alpha4beta1, only the highly metastatic melanoma cell lines MV3 and BLM, but not the low metastatic cell lines IF6 and 530, bind VCAM-1 with high affinity without further stimulation, and are therefore able to adhere to and migrate on isolated VCAM-1. Moreover, we demonstrate that function-blocking antibodies against the integrin alpha4beta1, as well as siRNA-mediated knock-down of the alpha4 subunit in these highly metastatic human melanoma cells reduce their transendothelial migration. These data imply that only high affinity interactions between the integrin alpha4beta1 on melanoma cells and VCAM-1 on activated endothelial cells may enhance the metastatic capacity of human beta2/beta3-negative melanoma cells.  相似文献   

13.
We developed a ligand-mimetic antibody Fab fragment specific for Drosophila alphaPS2betaPS integrins to probe the ligand binding affinities of these invertebrate receptors. TWOW-1 was constructed by inserting a fragment of the extracellular matrix protein Tiggrin into the H-CDR3 of the alphavbeta3 ligand-mimetic antibody WOW-1. The specificity of alphaPS2betaPS binding to TWOW-1 was demonstrated by numerous tests used for other integrin-ligand interactions. Binding was decreased in the presence of EDTA or RGD peptides and by mutation of the TWOW-1 RGD sequence or the betaPS metal ion-dependent adhesion site (MIDAS) motif. TWOW-1 binding was increased by mutations in the alphaPS2 membrane-proximal cytoplasmic GFFNR sequence or by exposure to Mn2+. Although Mn2+ is sometimes assumed to promote maximal integrin activity, TWOW-1 binding in Mn2+ could be increased further by the alphaPS2 GFFNR --> GFANA mutation. A mutation in the betaPS I domain (betaPS-b58; V409D) greatly increased ligand binding affinity, explaining the increased cell spreading mediated by alphaPS2betaPS-b58. Further mutagenesis of this residue suggested that Val-409 normally stabilizes the closed head conformation. Mutations that potentially reduce interaction of the integrin beta subunit plexin-semaphorin-integrin (PSI) and stalk domains have been shown to have activating properties. We found that complete deletion of the betaPS PSI domain enhanced TWOW-1 binding. Moreover the PSI domain is dispensable for at least some other integrin functions because betaPS-DeltaPSI displayed an enhanced ability to mediate cell spreading. These studies establish a means to evaluate mechanisms and consequences of integrin affinity modulation in a tractable model genetic system.  相似文献   

14.
Alphavbeta3 integrin is a crucial factor involved in a variety of physiological processes, such as cell growth and migration, tumor invasion and metastasis, angiogenesis, and wound healing. Alphavbeta3 integrin exerts its effect by regulating endothelial cell (EC) migration, proliferation, and survival. Inhibiting the function of alphavbeta3 integrin, therefore, represents a potential anti-cancer, anti-thrombotic, and anti-inflammatory strategy. In this study, we tested an RNA aptamer, Apt-alphavbeta3 that binds recombinant alphavbeta3 integrin, for its ability to bind endogenous alphavbeta3 integrin on the surface of cells in culture and to subsequently affect cellular response. Our data illustrate that Apt-alphavbeta3 binds alphavbeta3 integrin expressed on the surface of live HUVECs. This interaction significantly decreases both basal and PDGF-induced cell proliferation as well as inhibition of cell adhesion. Apt-alphavbeta3 can also reduce PDGF-stimulated tube formation and increase HUVEC apoptosis through inhibition of FAK phosphorylation pathway. Our results demonstrate that by binding to its target, Apt-alphavbeta3 can efficiently inhibit human EC proliferation and survival, resulting in reduced angiogenesis. It predicts that Apt-alphavbeta3 could become useful in both tumor imaging and the treatment of tumor growth, atherosclerosis, thrombosis, and inflammation.  相似文献   

15.
CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family   总被引:10,自引:0,他引:10  
CCN3 (NOV) is a matricellular protein of the CCN family, which also includes CCN1 (CYR61), CCN2 (CTGF), CCN4 (WISP-1), CCN5 (WISP-2), and CCN6 (WISP-3). During development, CCN3 is expressed widely in derivatives of all three germ layers, and high levels of expression are observed in smooth muscle cells of the arterial vessel wall. Altered expression of CCN3 has been observed in a variety of tumors, including hepatocellular carcinomas, Wilm's tumors, Ewing's sarcomas, gliomas, rhabdomyosarcomas, and adrenocortical carcinomas. To understand its biological functions, we have investigated the activities of purified recombinant CCN3. We show that in endothelial cells, CCN3 supports cell adhesion, induces directed cell migration (chemotaxis), and promotes cell survival. Mechanistically, CCN3 supports human umbilical vein endothelial cell adhesion through multiple cell surface receptors, including integrins alphavbeta3, alpha5beta1, alpha6beta1, and heparan sulfate proteoglycans. In contrast, CCN3-induced cell migration is dependent on integrins alphavbeta3 and alpha5beta1, whereas alpha6beta1 does not play a role in this process. Although CCN3 does not contain a RGD sequence, it binds directly to immobilized integrins alphavbeta3 and alpha5beta1, with half-maximal binding occurring at 10 nm and 50 nm CCN3, respectively. Furthermore, CCN3 induces neovascularization when implanted in rat cornea, demonstrating that it is a novel angiogenic inducer. Together, these findings show that CCN3 is a ligand of integrins alphavbeta3 and alpha5beta1, acts directly upon endothelial cells to stimulate pro-angiogenic activities, and induces angiogenesis in vivo.  相似文献   

16.
We previously reported that mouse orthologue of puromycin insensitive leucyl-specific aminopeptidase (mPILSAP) played an important role in angiogenesis by regulating the proliferation and migration of endothelial cells (ECs) (Miyashita et al., 2002. Blood 99:3241-3249). Here, we examined the mechanism as to how mPILSAP regulates the migration of ECs. Cell adhesion through integrins plays a crucial role in cell migration, and ECs use at least type-1 collagen receptor integrin alpha2beta1, fibronectin receptor alpha5beta1, and vitronectin receptors alphavbeta3 and alphavbeta5. mPILSAP antisense oligodeoxynucleotide (AS-ODN) or leucinethiol (LT), a leucyl-aminopeptidase inhibitor, did not affect the attachment but did significantly inhibit the spreading of cells of the murine endothelial cell line MSS31 when they were plated on vitronectin-, fibronectin-, or type-1 collagen, although they did not affect the expression of integrin alpha2, alpha5, alphav, beta1, beta3, and beta5 subunits on the cell surface. AS-ODN and LT also inhibited the tyrosine phosphorylation of FAK when cells were plated on vitronectin, fibronectin, or type-1 collagen. This inhibition of cell spreading and of tyrosine phosphorylation of FAK could be negated by Mg(2+). These results suggest that mPILSAP is involved in the activation of endothelial integrins.  相似文献   

17.
The extracellular matrix protein, osteopontin, is a ligand for several members of the integrin family, including alpha5beta1, alphavbeta3, alphavbeta5 and alpha9beta1. Osteopontin is a substrate for a number of extracellular proteases, including thrombin and the metalloproteases MMP-3 and MMP-7, which cleave osteopontin at sites close to or within the mapped integrin binding sites. Using affinity chromatography and cell adhesion assays, we now identify the integrin alphavbeta6 as an additional osteopontin receptor. Utilizing a series of recombinant forms of osteopontin, we compared the structural requirements for alphavbeta6 binding with those for the 4 other osteopontin-binding integrins. Like alpha5beta1, alphavbeta3 and alphavbeta5 (but not alpha9beta1), alphavbeta6 binds to the RGD site in osteopontin, since RGD peptide or mutation of this site to RAA completely inhibits alphavbeta6-mediated cell adhesion. For both alpha9beta1 and alpha5beta1, the N-terminal fragment generated by thrombin cleavage is a much better ligand than full length osteopontin, whereas thrombin-cleavage does not appear to be required for optimal adhesion to alphavbeta3, alphavbeta5 or alphavbeta6. A recombinant fragment predicted to be generated by MMP cleavage no longer supported alpha5beta1 or alpha9beta1-mediated adhesion, but adhesion mediated by alphavbeta5 or alphavbeta6 was unaffected. Finally, adhesion of alphavbeta5 or alphavbeta6 was inhibited by mutation of two aspartic acid residues upstream of the RGD site, whereas adhesion mediated by alphavbeta3, alpha5beta1 or alpha9beta1 was unaffected by these mutations. These results suggest that the hierarchy of integrin interactions with osteopontin can undergo complex regulation at least in part through the action of extracellular proteases.  相似文献   

18.
Inside-out integrin signalling.   总被引:26,自引:0,他引:26  
Integrins are expressed by virtually all cells and play key roles in a range of cellular processes. Changes in the integrin surface repertoire provide a means of altering the strength and ligand preferences of cell adhesion. Recent research has examined the affinity modulation of integrins, a rapid and versatile mechanism of cell adhesion regulation. Studies with a prototype, alpha IIb beta 3, indicate that intracellular events influence the conformation and ligand-binding affinity of the extracellular domain of integrins. This 'inside-out' signal transduction appears to be mediated through the integrin cytoplasmic domains. In addition, in some cases affinity modulation of integrins may be cell-type specific. The clarification of the mechanisms of integrin affinity modulation should help explain rapid changes in cell adhesion that occur during cell migration, aggregation and the cell cycle.  相似文献   

19.
Vascular endothelial growth factor A (VEGF-A) is a potent inducer of angiogenesis. We now show that VEGF-A-induced adhesion and migration of human endothelial cells are dependent on the integrin alpha9beta1 and that VEGF-A is a direct ligand for this integrin. Adhesion and migration of these cells on the 165 and 121 isoforms of VEGF-A depend on cooperative input from alpha9beta1 and the cognate receptor for VEGF-A, VEGF receptor 2 (VEGF-R2). Unlike alpha3beta1or alphavbeta3 integrins, alpha9beta1 was also found to bind the 121 isoform of VEGF-A. This interaction appears to be biologically significant, because alpha9beta1-blocking antibody dramatically and specifically inhibited angiogenesis induced by VEGF-A165 or -121. Together with our previous findings that alpha9beta1 directly binds to VEGF-C and -D and contributes to lymphangiogenesis, these results identify the integrin alpha9beta1 as a potential pharmacotherapeutic target for inhibition of pathogenic angiogenesis and lymphangiogenesis.  相似文献   

20.
Human ECV304 cells respond reproducibly by tube formation to complex basement membrane matrices. Laminins are major glycoproteins of basement membranes. We therefore studied the ability of ECV304 cells to attach to defined laminin isoforms and to fibronectin, and identified the involved laminin receptors. The cells bound poorly to fibronectin, to some extent to laminin-1, whereas laminin-2/4 and -10/11 were strong adhesive substrates. Antibody perturbation assays showed that adhesion to laminin-1 was mediated by integrin alpha6beta1, and adhesion to laminin-2/4 by cooperative activity of integrins alpha3beta1 and alpha6beta1. Adhesion of ECV 304 cells to laminin-10/11 was mainly mediated by integrins alpha3beta1, with minor involvement of alpha6beta1/4 and alphavbeta3. Solid-phase binding assays confirmed that integrin alphavbeta3 binds human laminin-10/11 and -10, in an RGD-dependent fashion. Although integrin alphavbeta3 played a very minor role in cell adhesion to laminin-10/11, this interaction facilitated growth factor-induced proliferation of ECV304 cells. In response to FGF-2 or VEGF, the cells proliferated better when attached on laminin-10/11 than on laminin-1, -2/4, or gelatin. The proliferation induced by the joint application of laminin-10/11 and either one of the growth factors could be blocked by antibodies against integrin alphavbeta3. Fragments of several other basement membrane components are known to interact with alphavbeta3. The current data show that that integrin alphavbeta3 can bind intact alpha5-containing laminin trimers. Since the laminin alpha5 chain is broadly expressed in adult basement membranes, this interaction could be physiologically important. Our data suggest that this interaction is involved in the regulation of cellular responses to growth factors known to be involved in epithelial and endothelial development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号