首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Shigella flexneri uses its type III secretion system (T3SS) to promote invasion of human intestinal epithelial cells as the first step in causing shigellosis, a life-threatening form of dysentery. The Shigella type III secretion apparatus (T3SA) consists of a basal body that spans the bacterial envelope and an exposed needle that injects effector proteins into target cells. The nascent Shigella T3SA needle is topped with a pentamer of the needle tip protein invasion plasmid antigen D (IpaD). Bile salts trigger recruitment of the first hydrophobic translocator protein, IpaB, to the tip complex where it senses contact with a host membrane. In the bacterial cytoplasm, IpaB exists in a complex with its chaperone IpgC. Several structures of IpgC have been determined, and we recently reported the 2.1 ? crystal structure of the N-terminal domain (IpaB(74.224)) of IpaB. Like IpgC, the IpaB N-terminal domain exists as a homodimer in solution. We now report that when the two are mixed, these homodimers dissociate and form heterodimers having a nanomolar dissociation constant. This is consistent with the equivalent complexes copurified after they had been co-expressed in Escherichia coli. Fluorescence data presented here also indicate that the N-terminal domain of IpaB possesses two regions that appear to contribute additively to chaperone binding. It is also likely that the N-terminus of IpaB adopts an alternative conformation as a result of chaperone binding. The importance of these findings within the functional context of these proteins is discussed.  相似文献   

2.
Type III secretion systems (TTSSs) utilized by enteropathogenic bacteria require the presence of small, acidic virulence-associated chaperones for effective host cell infection. We adopted a combination of biochemical and cellular techniques to define the chaperone binding domains (CBDs) in the translocators IpaB and IpaC associated with the chaperone IpgC from Shigella flexneri. We identified a novel CBD in IpaB and furthermore precisely mapped the boundaries of the CBDs in both translocator proteins. In IpaC a single binding domain associates with IpgC. In IpaB, we show that the binding of the newly characterized CBD is essential in maintaining the ternary arrangement of chaperone-translocator complex. This hitherto unknown function is reflected in the co-crystal structure as well, with an IpgC dimer bound to an IpaB fragment comprising both CBDs. Moreover, in the absence of this novel CBD the IpaB/IpgC complex aggregates. This dual-recognition of a domain in the protein by the chaperone in facilitating the correct chaperone-substrate organization describes a new function for the TTSS associated chaperone-substrate complexes.  相似文献   

3.
4.
Invasion of epithelial cells by Shigella flexneri involves entry and dissemination. The main effectors of entry, IpaB and IpaC, are also required for contact haemolytic activity and escape from the phagosome in infected macrophages. These proteins are stored in the cytoplasm in association with the chaperone IpgC, before their secretion by a type III secretion apparatus is activated by host cells. We used a His-tagged IpgC protein to purify IpgC-containing complexes and showed that only IpaB and IpaC are associated with IpgC. Plasmids expressing His6-IpgC either alone or together with IpaB or IpaC under the control of an IPTG-inducible lac promoter were introduced into ipgC , ipaB or ipaC mutants. Induction of expression of the recombinant plasmid-encoded proteins by IPTG allowed bacteria to enter epithelial cells, and the role of these proteins in dissemination was investigated by incubating infected cells in either the absence or the presence of IPTG. The size of plaques produced by recombinant strains on cell monolayers was regulated by IPTG, indicating that IpgC, IpaB and IpaC were each required for efficient dissemination. Electron microscopy analysis of infected cells indicated that these proteins were necessary for lysis of the membrane of the protrusions during cell-to-cell spread.  相似文献   

5.
The type III secretion (TTS) system of Gram-negative pathogenic bacteria is composed of proteins that assemble into the TTS machinery, proteins that are secreted by this machinery and specific chaperones that are required for storage and sometimes secretion of these proteins. Many sequential protein interactions are involved in the TTS pathway to deliver effector proteins to host cells. We used the yeast two-hybrid system to investigate the interaction partners of the Shigella flexneri effectors and chaperones. Libraries of preys containing random fusions with fragments of the TTS proteins were screened using effectors and chaperones as baits. Interactions between the effectors IpaB and IpaC and their chaperone IpgC were detected by this method, and interaction domains were identified. Using a His-tagged IpgC protein to co-purify truncated IpaB and IpaC proteins, we showed that the chaperone-binding domain was unique and located in the N-terminus of these proteins. This domain was not required for the secretion of recombinant proteins but was involved in the stability of IpaC and instability of IpaB. Homotypic interactions were identified with the baits IpaA, IpaB and IpaC. Interactions between effectors and components of the TTS machinery were also selected that might give insights into regulation of the TTS process.  相似文献   

6.
The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n‐octyl‐oligo‐oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N‐dimethyldodecylamine N‐oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size‐dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore.  相似文献   

7.
Entry into host cells is an essential feature in the pathogenicity of Salmonella spp. The inv locus of Salmonella typhimurium encodes several proteins which are components of a type III protein secretion system required for these organisms to gain access to host cells. We report here the identification of several proteins whose secretion into the culture supernatant of S. typhimurium is dependent on the function of the inv-encoded translocation apparatus. Nucleotide sequence analysis of the genes encoding two of these secreted proteins, SipB and SipC, indicated that they are homologous to the Shigella sp. invasins IpaB and IpaC, respectively. An additional gene was identified, sicA, which encodes a protein homologous to IpgC, a Shigella protein that serves as a molecular chaperone for the invasins IpaB and IpaC. Nonpolar mutations in sicA, sipB, and sipC rendered S. typhimurium unable to enter cultured epithelial cells, indicating that these genes are required for bacterial internalization.  相似文献   

8.
9.
Invasion plasmid antigen C (IpaC) is secreted via the type III secretion system (TTSS) of Shigella flexneri and serves as an essential effector molecule for epithelial cell invasion. The only homologue of IpaC identified thus far is Salmonella invasion protein C (SipC/SspC), which is essential for enterocyte invasion by Salmonella typhimurium. To explore the biochemical and functional relatedness of IpaC and SipC, recombinant derivatives of both proteins were purified so that their in vitro biochemical properties could be compared. Both proteins were found to: (i) enhance the entry of wild-type S. flexneri and S. typhimurium into cultured cells; (ii) interact with phospholipid membranes; and (iii) oligomerize in solution; however, IpaC appeared to be more efficient in carrying out several of the biochemical properties examined. Overall, the data indicate that purified IpaC and SipC are biochemically similar, although not identical with respect to their in vitro activities. To extend these observations, complementation analyses were conducted using S. flexneri SF621 and S. typhimurium SB220, neither of which is capable of invading epithelial cells because of non-polar null mutations in ipaC and sipC respectively. Interestingly, both ipaC and sipC restored invasiveness to SB220 whereas only ipaC restored invasiveness to SF621, suggesting that SipC lacks an activity possessed by IpaC. This functional difference is not at the level of secretion because IpaC and SipC are both secreted by SF621 and it does not appear to be because of SipC dependency on this native chaperone as coexpression of sipC and sicA in SF621 still failed to restore detectable invasiveness. Taken together, the data suggest that IpaC and SipC differ in either their ability to be translocated into host cells or in their function as effectors of host cell invasion. Because IpaB shares significant sequence homology with the YopB translocator of Yersinia species, the ability for IpaC and SipC to associate with this protein was explored as a potential indicator of translocation function. Both proteins were found to bind to purified IpaB with an apparent dissociation constant in the nanomolar range, suggesting that they may differ with respect to effector function. Interestingly, whereas SB220 expressing sipC behaved like wild-type Salmonella, in that it remained within its membrane-bound vacuole following entry into host cells, SB220 expressing ipaC was found in the cytoplasm of host cells. This observation indicates that IpaC and SipC are responsible for a major difference in the invasion strategies of Shigella and Salmonella, that is, they escape into the host cell cytoplasm. The implications of the role of each protein's biochemistry relative to its in vivo function is discussed.  相似文献   

10.

Background  

Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators.  相似文献   

11.
Type III secretion (T3S) systems are key features of many gram-negative bacteria that translocate T3S effector proteins directly into eukaryotic cells. There, T3S effectors exert many effects, such as cellular invasion or modulation of host immune responses. Studying spatiotemporal orchestrated secretion of various effectors has been difficult without disrupting their functions. Here we developed a new approach using Shigella flexneri T3S as a model to investigate bacterial translocation of individual effectors via multidimensional time-lapse microscopy. We demonstrate that direct fluorescent labeling of tetracysteine motif-tagged effectors IpaB and IpaC is possible in situ without loss of function. Studying the T3S kinetics of IpaB and IpaC ejection from individual bacteria, we found that the entire pools of IpaB and IpaC were released concurrently upon host cell contact, and that 50% of each effector was secreted in 240 s. This method allows an unprecedented analysis of the spatiotemporal events during T3S.  相似文献   

12.
Bacterial type III secretion systems (T3SS) are used to inject proteins into mammalian cells to subvert cellular functions. The Shigella T3SS apparatus (T3SA) is comprised of a basal body, cytoplasmic sorting platform and exposed needle with needle “tip complex” (TC). TC maturation occurs when the translocator protein IpaB is recruited to the needle tip where both IpaD and IpaB control secretion induction. IpaB insertion into the host membrane is the first step of translocon pore formation and secretion induction. We employed disruptive insertional mutagenesis, using bacteriophage T4 lysozyme (T4L), within predicted IpaB loops to show how topological features affect TC functions (secretion control, translocon formation and effector secretion). Insertions within the N‐terminal half of IpaB were most likely to result in a loss of steady‐state secretion control, however, all but the two that were not recognized by the T3SA retained nearly wild‐type hemolysis (translocon formation) and invasiveness levels (effector secretion). In contrast, all but one insertion in the C‐terminal half of IpaB maintained secretion control but were impaired for hemolysis and invasion. These nature of the data suggest the latter mutants are defective in a post‐secretion event, most likely due to impaired interactions with the second translocator protein IpaC. Intriguingly, only two insertion mutants displayed readily detectable T4L on the bacterial surface. The data create a picture in which the makeup and structure of a functional T3SA TC is highly amenable to physical perturbation, indicating that the tertiary structure of IpaB within the TC is more plastic than previously realized.  相似文献   

13.
Type III secretion systems (T3SSs) are essential virulence determinants of many Gram-negative bacterial pathogens. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region and a hollow 'needle' protruding from the bacterial surface. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which proteins that facilitate host cell invasion are translocated. As the needle is implicated in host cell sensing and secretion regulation, its tip should contain components that initiate host cell contact. Through biochemical and immunological studies of wild-type and mutant Shigella T3SS needles, we reveal tip complexes of differing compositions and functional states, which appear to represent the molecular events surrounding host cell sensing and pore formation. Our studies indicate that the interaction between IpaB and IpaD at needle tips is key to host cell sensing, orchestration of IpaC secretion and its subsequent assembly at needle tips. This allows insertion into the host cell membrane of a translocation pore that is continuous with the needle.  相似文献   

14.
15.
16.
R Ménard  P Sansonetti    C Parsot 《The EMBO journal》1994,13(22):5293-5302
Shigella species are enteropathogens that invade epithelial cells of the human colon. Entry into epithelial cells is triggered by the IpaB, IpaC and IpaD proteins which are translocated into the medium through the specific Mxi-Spa machinery. In vitro, Shigella cells secrete only a small fraction of the Ipa proteins, the majority of which remains in the cytoplasm. We show here that upon interaction with cultured epithelial cells or in the presence of fetal bovine serum, S.flexneri release pre-synthesized Ipa molecules from the cytoplasm into the environment. Evidence is presented that IpaB and IpaD are essential for both blocking secretion through the Mxi-Spa translocon in the absence of a secretion-inducing signal and controlling secretion of the Ipa proteins in the presence of a signal. Subcellular localization and analysis of the molecular interactions of the Ipa proteins indicate that IpaB and IpaD associate transiently in the bacterial envelope. We propose that IpaB and IpaD, by interacting in the secretion apparatus, modulate secretion.  相似文献   

17.
Shigella flexneri, the causative agent of bacillar dystentery, invades the colonic mucosa where it elicits an intense inflammatory reaction responsible for destruction of the epithelium. During cell invasion, contact with host cells activates the type-III secretion of the Shigella IpaB and IpaC proteins. IpaB and IpaC are inserted into host cell plasma membranes and trigger initial signals that result in actin polymerization, while allowing cytosolic access of other bacterial effectors that further reorganize the cytoskeleton. After internalization, Shigella moves intracellularly and forms protrusions that infect neighbouring cells, promoting bacterial dissemination across the epithelium. Here, we show that during cell invasion, Shigella induces transient peaks in intracellular calcium concentration that are dependent on a functional type-III secretory apparatus. In addition, Shigella invasion induces the opening of Connexin 26 (Cx26) hemichannels in an actin- and phospholipase-C-dependent manner, allowing release of ATP into the medium. The released ATP, in turn, increases bacterial invasion and spreading, as well as calcium signalling induced by Shigella. These results provide evidence that pathogen-induced opening of connexin channels promotes signalling events that favour bacterial invasion and dissemination.  相似文献   

18.
Type III secretion systems are used by many Gram‐negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host‐cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore‐forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the Pseudomonas aeruginosa translocator protein PopD as a model to identify its export signals. The N‐terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone binding site and one at the very C‐terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator–effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells.  相似文献   

19.
Type III secretion (TTS) is an essential virulence function for Shigella flexneri that delivers effector proteins that are responsible for bacterial invasion of intestinal epithelial cells. The Shigella TTS apparatus (TTSA) consists of a basal body that spans the bacterial inner and outer membranes and a needle exposed at the pathogen surface. At the distal end of the needle is a "tip complex" composed of invasion plasmid antigen D (IpaD). IpaD not only regulates TTS, but is required for the recruitment and stable association of the translocator protein IpaB at the TTSA needle tip in the presence of deoxycholate or other bile salts. This phenomenon is not accompanied by induction of TTS or the recruitment of IpaC to the Shigella surface. We now show that IpaD specifically binds fluorescein-labeled deoxycholate and, based on energy transfer measurements and docking simulations, this interaction appears to occur where the N-terminal domain of IpaD meets its central coiled-coil, a region that may also be involved in needle-tip interactions. TTS is initiated as a series of distinct steps and that small molecules present in the bacterial milieu are capable of inducing the first step of TSS through interactions with the needle tip protein IpaD. Furthermore, the amino acids proposed to be important for deoxycholate binding by IpaD appear to have significant roles in regulating tip complex composition and pathogen entry into host cells.  相似文献   

20.
Shigella deliver a subset of effector proteins such as IpaA, IpaB and IpaC via the type III secretion system (TTSS) into host cells during the infection of colonic epithelial cells. Many bacterial effectors including some from Shigella require specific chaperones for protection from degradation and targeting to the TTSS. In this study, we have investigated the role of the icsB gene located upstream of the ipaBCDA operon in Shigella infection because the role of IcsB as a virulence factor remains unknown. Here, we found that the IcsB protein is secreted via the TTSS of Shigella in vitro and in vivo. We show that IpgA protein encoded by ipgA, the gene immediately downstream of icsB, serves as the chaperone required for the stabilization and secretion of IcsB. We have shown that IcsB binds to IpgA in bacterial cytosol and the binding site is in the middle of the IcsB protein. Intriguingly, although its significance in Shigella pathogenicity is as yet unclear, the icsB gene can be read-through into the ipgA gene to create a translational fusion protein. Furthermore, the contribution of IcsB to the pathogenicity of Shigella was demonstrated by plaque-forming assay and the Sereny test. The ability of the icsB mutant to form plaques was greatly reduced compared with that of the wild type in MDCK cell monolayers. Furthermore, when guinea pig eyes were infected with a non-polar icsB mutant, the bacteria failed to provoke keratoconjunctivitis. These results suggest that IcsB is secreted via the TTSS, chaperoned by IpgA, and required at the post-invasion stage of Shigella pathogenicity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号