首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burrowing benthic animals belonging to the same functional group may produce species-specific effects on microbially mediated nitrogen (N) processes depending upon different ecological traits. We investigated the effects of two tube-dwelling organisms, amphipods (Corophium insidiosum) and chironomid larvae (Chironomus plumosus), on benthic N cycling in bioturbated estuarine sediments. Aims of this work were to analyze the interactions among burrowers and N-related microbial processes in two distinct sedimentary environments colonized by benthic animals with different ecological traits. We hypothesized higher rates of nitrification and higher coupled nitrification–denitrification in sediments with C. insidiosum due to continuous ventilation rates. We expected higher denitrification of water column nitrate in sediments with C. plumosus due to lower and intermittent ventilation activity and lower oxygen levels in burrows. To this purpose, we combined process–specific (nitrification and denitrification) with net N flux measurements in intact and reconstructed sediments. Sediments with C. insidiosum had higher rates of oxygen demand and of potential nitrification and higher concentration of pore water NH4+ as compared to sediments with C. plumosus. Sediments with both species displayed comparable net N2 fluxes, mostly sustained by respiration of water column NO3? in sediments with chironomid larvae and by NO3? produced within sediments in sediments with corophiid amphipods. Corophium insidiosum stimulated nitrification nearly 15-fold more as compared to C. plumosus. Overall, our results demonstrate that sediments with burrowing fauna may display similar rates of denitrification, but underlying mechanisms may deeply vary and be species-specific.  相似文献   

2.
We examined the effect of concentration on nitrogen uptake patterns for a suburban stream in Maryland and addressed the question: How does NO3 ? uptake change as a function of concentration and how do uptake patterns compare with those found for NH4 +? We applied a longitudinal (stream channel corridor) approach in a forested stream section and conducted short-term nutrient addition experiments in late summer 2004. In the downstream direction, NO3 ? concentrations decreased because of residential development in headwaters and downstream dilution; NH4 + concentrations slightly increased. The uptake patterns for NO3 ? were very different from NH4 +. While NH4 + had a typical negative relationship between first-order uptake rate constant (K c ) and stream size, NO3 ? had a reverse pattern. We found differences for other metrics, including uptake velocity (V f ) and areal uptake rate (U). We attributed these differences to a stream size effect, a concentration effect and a biological uptake capacity effect. For NO3 ? these combined effects produced a downstream increase in K c , V f and U; for NH4 + they produced a downstream decrease in K c and V f , and a not well defined pattern for U. We attributed a downstream increase in NO3 ? uptake capacity to an increase in hyporheic exchange and a likely increase in carbon availability. We also found that K c and V f were indirectly related with concentration. Similar evidence of ‘nutrient saturation’ has been reported in other recent studies. Our results suggest that higher-order uptake models might be warranted when scaling NO3 ? uptake across watersheds that are subject to increased nitrogen loading.  相似文献   

3.
To introduce endangered plants to urban green space for ex situ conservation successfully, it is important to better understand the optimal NO3 ?/NH4 + ratios for profitable plant. Increasing nitrogen deposition altered the nitrate to ammonium ratio (NO3 ?/NH4 +) in soil. This change may strongly affect the fate of endangered plants, which often have little ability to adapt to environmental changes. In this study, we carried out a microcosm hydroponic experiment by growing Mosla hangchowensis (an endangered species) to test its preference to NO3 ?/NH4 + ratios and used congeneric M. dianthera (a widespread species) for comparison. Results showed that M. hangchowensis preferred an equal NO3 ?/NH4 + ratio to NO3 ? as an N source, with a higher biomass observed under NO3 ?/NH4 + ratios of 50/50 and 75/25 than other treatments. However, M. dianthera preferred NO3 ? as N source, with a higher biomass under NO3 ?/NH4 + ratios of 100/0 and 75/25 than other treatments. NH4 + is the dominant form of N in atmospheric deposition in China and continued increasing in nitrogen deposition may be detrimental to M. hangchowensis, while only have minimal effects on M. dianthera. Urban regions are expanding, and the high environmental heterogeneity in urban areas can provide potential habitats for M. hangchowensis. Based on this study, we advise that the ex suit conservation of M. hangchowensis in urban green spaces needs to adjust the fertilization strategy according to the situation of nitrogen deposition to achieve the optimal NO3 ?/NH4 + ratio.  相似文献   

4.
To enhance the startup and efficient simultaneous nitrification and denitrification for sewage treatment, sequencing batch biofilm reactors (SBBRs) partially coupled with rice husk were established and operated under various intermittent micro-aeration cycles (IMCs) and COD/N ratios under oxygen-limiting intermittent aeration conditions. Experimental results showed that the increase of IMCs with non-aeration/micro-aeration mode of (8 h/4 h)1 to (2 h/1 h)4 in a 12 h-cycle accelerated the startup performance and improved NH4+–N and COD removal. NH4+–N, TN and COD removal efficiencies were 98.7?±?0.9, 89.2?±?5.2 and 82.9?±?6.7% at COD/N ratio of 7.6 with the highest IMCs in SBBR, respectively. Higher TN removal efficiencies of 87.2?±?4.0 and 58.1?±?3.5% were also achieved at lower COD/N ratio of 5.6 and 2.8, respectively. In SBBRs with various IMCs, facultative denitrifier like genus Acinetobacter and solid-phase denitrifier belonging to Comamonadaceae family were enriched. However, aerobic denitrifiers with function of heterotrophic nitrification like Paracoccus were favored to enrich under higher IMCs condition, and more anoxic denitrifiers like sulfur-based autotrophic denitrifier Thiothrix and heterotrophic denitrifiers like Pseudomonas and Methyloversatilis were observed at lower IMCs condition. Autotrophic nitrifier (Nitrosomonas and Nitrosipra) and heterotrophic nitrifiers both contributed to the efficient nitrification.  相似文献   

5.
6.
Dissimilatory NO3 reduction in sediments is often measured in bulk incubations that destroy in situ gradients of controlling factors such as sulfide and oxygen. Additionally, the use of unnaturally high NO3 concentrations yields potential rather than actual activities of dissimilatory NO3 reduction. We developed a technique to determine the vertical distribution of the net rates of dissimilatory nitrate reduction to ammonium (DNRA) with minimal physical disturbance in intact sediment cores at millimeter-level resolution. This allows DNRA activity to be directly linked to the microenvironmental conditions in the layer of NO3 consumption. The water column of the sediment core is amended with 15NO3 at the in situ 14NO3 concentration. A gel probe is deployed in the sediment and is retrieved after complete diffusive equilibration between the gel and the sediment pore water. The gel is then sliced and the NH4+ dissolved in the gel slices is chemically converted by hypobromite to N2 in reaction vials. The isotopic composition of N2 is determined by mass spectrometry. We used the combined gel probe and isotopic labeling technique with freshwater and marine sediment cores and with sterile quartz sand with artificial gradients of 15NH4+. The results were compared to the NH4+ microsensor profiles measured in freshwater sediment and quartz sand and to the N2O microsensor profiles measured in acetylene-amended sediments to trace denitrification.Nitrate accounts for the eutrophication of many human-affected aquatic ecosystems (19, 21). Sediment bacteria may mitigate NO3 pollution by denitrification and anaerobic ammonium oxidation (anammox), which produce N2 (13, 18). However, inorganic nitrogen is retained in aquatic ecosystems when sediment bacteria reduce NO3 to NH4+ by dissimilatory nitrate reduction to ammonium (DNRA) (5, 12, 16, 39). Hence, DNRA contributes to rather than counteracts eutrophication (23). DNRA may be the dominant pathway of dissimilatory NO3 reduction in sediments that are rich in electron donors, such as labile organic carbon and sulfide (4, 8, 17, 38, 55). High rates of DNRA are thus found in sediments affected by coastal aquaculture (8, 36) and settling algal blooms (16).DNRA, denitrification, and the chemical factors that control the partitioning between them (e.g., sulfide) should ideally be investigated in undisturbed sediments. The redox stratification of sediments involves vertical concentration gradients of pore water solutes. These gradients are often very steep, and their measurement requires high-resolution techniques, such as microsensors (26, 42) and gel probes (9, 54). If, for instance, the influence of sulfide on DNRA and denitrification is to be investigated, one wants to know exactly the sulfide concentration in the layers of DNRA and denitrification activity, as well as the flux of sulfide into these layers. This information can easily be obtained using H2S and pH microsensors (22, 43). It is less trivial to determine the vertical distribution of DNRA and denitrification activity in undisturbed sediments. Denitrification activity can be traced using a combination of the acetylene inhibition technique (51) and N2O microsensors (1). Acetylene inhibits the last step of denitrification, and therefore, N2O accumulates in the layer of denitrification activity (44). This method underestimates the denitrification activity in sediments with high rates of coupled nitrification-denitrification because acetylene also inhibits nitrification (50).The vertical distribution of DNRA activity in undisturbed sediment has, to the best of our knowledge, never been determined; thus, the microenvironmental conditions in the layer of DNRA activity remain unknown. Until now, the influence of chemical factors on DNRA and denitrification in sediments has been assessed by slurry incubations (4, 12, 30), by flux measurements with sealed sediment cores (7, 47) or flowthrough sediment cores (16, 27, 37), and in one case, in reconstituted sediment cores sliced at centimeter-level resolution (39). Here, we present a new method, the combined gel probe and isotope labeling technique, to determine the vertical distribution of the net rates of DNRA in sediments. The sediments remain largely undisturbed and the NO3 amendments are within the range of in situ concentrations. The DNRA measurements can be related to the microprofiles of potential influencing factors measured in close vicinity of the gel probe. This allows DNRA activity to be directly linked with the microenvironmental conditions in the sediment.  相似文献   

7.
Producing valuable coproducts from oleaginous microalgae is an option to reduce the total cost of biofuel production. Here, the influence of nitrogen sources on biomass yield and lipid accumulation of a newly identified oleaginous green microalgal strain, Mychonastes afer HSO-3-1, was evaluated. Carbon assimilation and the following lipid biosynthesis of M. afer were inhibited to some extent under weak acidic conditions (6 < pH < 7) and any of the tested nitrogen source. The highest lipid productivity of 50.7 mg L?1 day?1 was achieved with a 17.6 mM nitrogen supplement in the form of urea. The cell polar lipid content was significantly higher than triacylglycerol (TAG), and saturated palmitic acid (C16:0) occupied a dominant position in the fatty acid profiles while culturing M. afer in acidic medium with NH4 + as the nitrogen source. Under neutral conditions, the lipid productivities of M. afer cultivated in media containing 17.6 mM of NaNO3, NH4Cl, and NH4NO3 were 76.2, 77.5, and 79.0 mg L?1 day?1, respectively. The greatest TAG content (58.56%) of total lipids was obtained when NaNO3 was used as the nitrogen source. There was no significant difference in the fatty acid composition of M. afer cells when they were cultivated in neutral media supplemented with NaNO3, urea, NH4Cl, and NH4NO3. Therefore, NH4 + was not a suitable nitrogen source for M. afer cultivation due to the additional labor, working procedures, and alkali required to adjust the medium pH. Considering that using urea as nitrogen source could reduce the cost of nutrient salts substantially and urea can be taken up and utilized by most microalgae, it is a preferred nitrogen source. The major properties of biodiesel derived from M. afer HSO-3-1 met biodiesel quality, and nervonic acid concentrations remained at approximately 3.0% of total fatty acids.  相似文献   

8.
The effect of NO3 ?:NH4 + ratio (14:1, 9:6, 7.5:7.5, 1:14, total 15 mmol/L N) in the nutrient solution on biomass, root morphology, and C and N metabolism parameter in hydroponically grown oilseed rape (Brassica napus L.) was evaluated. The dry weights of leaves and roots were significantly largest at the equal NO3 ?:NH4 + ratio (7.5:7.5) compared with those of high NO3 ?:NH4 + ratio (14:1) or low NO3 ?:NH4 + ratio (1:14). Additionally, low NO3 ?:NH4 + ratio (1:14) reduced total root length and root surface area compared with the equal NO3 ?:NH4 + ratio (7.5:7.5), while high NO3 ?:NH4 + ratio (14:1) did not show any significant effect on root morphology except average diameter. The maximum of chlorophyll a, chlorophyll b and carotenoid were obtained under 7.5:7.5 treatment, whereas the maximum of the leaf net photosynthetic (P n), stomatal conductance (G s) and transpiration rate (T r) were increased with increase in NH4 + concentration in the nutrient solution. The activity of nitrate reductase (NR) showed a significant difference at different NO3 ?:NH4 + ratios and ranged 9:6 > 7.5:7.5 > 14:1 > 1:14, whereas the range of soluble sugar and soluble protein was 7.5:7.5 > 1:14 > 9:6 > 14:1. Our study reveals that oilseed rape growth is greater under 7.5:7.5 treatment than that under three other treatments. Oilseed rape growth at high or low NO3 ?:NH4 + ratios was inhibited by decreased pigments, NR activity, soluble sugar, and soluble protein, whereas subdued root growth should be apprehended considerate under high NH4 + condition.  相似文献   

9.
Although it is generally accepted that tree species can influence nutrient cycling processes in soils, effects are not consistently found, nor are the mechanisms behind tree species effects well understood. Our objectives were to gain insights into the mechanism(s) underlying the effects of tree species on soil nitrogen cycling processes, and to determine the consistency of tree species effects across sites. We compared N cycling in soils beneath six tree species (ash, sycamore maple, lime, beech, pedunculate oak, Norway spruce) in common garden experiments planted 42 years earlier at three sites in Denmark with distinct land-use histories (forest and agriculture). We measured: (1) net and gross rates of N transformations using the 15N isotope pool-dilution method, (2) soil microbial community composition through qPCR of fungal ITS, bacterial and archaeal 16S, and (3) abundance of functional genes associated with N cycling processes—for nitrification the archaeal and bacterial ammonia-monooxygenase genes (amoA AOA and amoA AOB, respectively) and for denitrification, the nitrate reductase genes nirK and nirS. Carbon concentrations were higher in soils under spruce than under broadleaves, so N transformation rates were standardized per g soil C. Soil NH4+ parameters (gross ammonification, gross NH4+ consumption, net ammonification (net immobilization in this case), and NH4+ concentrations, per g C) were all lowest in soils under spruce. Soils under spruce also had the lowest gene abundance of bacteria, bacterial:fungal ratio, denitrifying microorganisms, ammonia-oxidizing archaea and ammonia-oxidizing bacteria. Differences in N-cycling processes and organisms among the five broadleaf species were smaller. The ‘spruce effect’ on soil microbes and N transformations appeared to be driven by its acidifying effect on soil and tighter N cycling, which occurred at the previously forested sites but not at the previously agricultural site. We conclude that existing characteristics of soils, including those resulting from previous land use, mediate the effects of tree species on the soil microbial communities and activities that determine rates of N-cycling processes.  相似文献   

10.
In our study at Mt. Kilimanjaro, East Africa, we quantified gross rates of ammonification, nitrification, nitrogen immobilization, and dissimilatory nitrate reduction to ammonium in soils across different land uses, climate zones (savanna, montane forest ecosystems, extensive agroforest homegarden, and intensively managed coffee plantation), and seasons (dry, wet, and transition from dry to wet season) to identify if and to what extent conversion of natural ecosystems to cultivated land has affected key soil microbial nitrogen turnover processes. Overall variation of gross soil nitrogen turnover rates across different ecosystems was more pronounced than seasonal variations, with the highest turnover rates occurring at the transition between dry and wet seasons. Nitrogen production and immobilization rates positively correlated with soil organic carbon and total nitrogen concentrations as well as substrate availability of dissolved organic carbon and nitrogen r > 0.67, P < 0.05), but did not correlate with soil ammonium and nitrate concentrations. Soil nitrogen turnover rates were highest in the montane Ocotea forest (ammonification 29.84, nitrification 12.67, NH4 + immobilization 38.92, NO3 ? immobilization 10.74, and DNRA 1.54 µg N g?1 SDW d?1) and progressively decreased with decreasing annual rainfall and increasing land-use intensity. Using indicators of N retention and characteristics of soil nutrient status, we observed a grouping of faster, but tighter N cycling in the (semi-) natural savanna and Ocotea forest. This contrasted with a more open N cycle in managed systems (the homegarden and coffee plantation) where N was more prone to leaching or gaseous losses due to high nitrate production rates. The partly disturbed (selected logging) lower montane forest ranged between these two groups.  相似文献   

11.
Understanding the dynamics of performance and bacterial community of biofilm under oligotrophic stress is necessary for the process optimization and risk management in biofilm systems for raw water pretreatment. In this study, biofilm obtained from a pilot-scale biofilm reactor was inoculated into a pilot-scale experimental tank for the treatment of oligotrophic raw water. Results showed that the removal of NH4 +–N was impaired in biofilm systems when influent NH4 +–N was less than 0.35 mg L?1 or NH4 +–N loading rate of less than 7.51 mg L?1 day?1. The dominant bacteria detected in biofilm of different carrier were obvious distinct from phylum to genus level under oligotrophic stress. The dominant bacteria in elastic stereo media carrier changed from Proteobacteria (51.1%) to Firmicutes (32.7%), while Proteobacteria was always dominant in suspended ball carrier after long-term operation under oligotrophic conditions. Oligotrophic stress largely decreased the functional bacteria for the removal of nitrogen and organics including many genera in Proteobacteria and Nitrospirae, but increased several genera with spore forming organisms or potential bacterial pathogens in ESM carrier mainly including Bacillus, Mycobacterium, Pseudomonas, etc.  相似文献   

12.
Intensive agriculture leads to increased nitrogen fluxes (mostly as nitrate, NO3 ?) to aquatic ecosystems, which in turn creates ecological problems, including eutrophication and associated harmful algal blooms. These problems have focused scientific attention on understanding the controls on nitrate reduction processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Our objective was to determine the effects of nutrient-tolerant bioturbating invertebrates (tubificid oligochaetes) on nitrogen cycling processes, specifically coupled nitrification–denitrification, net denitrification, DNRA, and biogeochemical fluxes (O2, NO3 ?, NH4 +, CO2, N2O, and CH4) in freshwater sediments. A mesocosm experiment determined how tubificid density and increasing NO3 ? concentrations (using N15 isotope tracing) interact to affect N cycling processes. At the lowest NO3 ? concentration and in the absence of bioturbation, the relative importance of denitrification to DNRA was similar (i.e., 49.6 and 50.4 ± 8.1 %, respectively). Increasing NO3 ? concentrations in the control cores (without fauna) stimulated denitrification, but did not enhance DNRA, which significantly altered the relative importance of denitrification compared to DNRA (94.6 vs. 5.4 ± 0.9 %, respectively). The presence of tubificid oligochaetes enhanced O2, NO3 ?, NH4 + fluxes, greenhouse gas production, and N cycling processes. The relative importance of denitrification to DNRA shifted towards favoring denitrification with both the increase in NO3 ? concentrations and the increase of bioturbation activity. Our study highlights that understanding the interactions between nutrient-tolerant bioturbating species and nitrate contamination is important for determining the nitrogen removal capacity of eutrophic freshwater ecosystems.  相似文献   

13.
14.
15.
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH4+-N and NO3?–N/NO2?–N (about 5 mg/L-N each) and high concentration of mixed NH4+–N and NO3?–N/NO2?–N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.  相似文献   

16.
Rivers are important sources of N2O emissions into the atmosphere. Nevertheless, N2O production processes in rivers are not well identified. We measured concentrations and isotopic ratios of N2O, NH4 +, NO2 ?, and NO3 ? in surface water to identify the microbial processes of N2O production along the Tama River in Japan. We also measured the functional gene abundance of nitrifiers and denitrifiers (amoA-bacteria, nirK, nirS, nosZ clade I, nosZ clade II) together with concentrations of dissolved organic carbon (DOC) and fluorescence intensities of protein and humic components of dissolved organic matter (DOM) to support the elucidation of N2O production processes. The observed nitrogen (δ15N) and oxygen (δ18O) of N2O were within the expected isotopic range of N2O produced by nitrate reduction, indicating that N2O was dominantly produced by denitrification. The positive significant correlation between N2ONet concentration and nirK gene abundance implied that nitrifiers and denitrifiers are contributors to N2O production. Fluorescence intensities of protein and humic components of DOM and concentrations of DOC did not show significant correlations with N2O concentrations, which suggests that DOC and abundance of DOM components do not control dissolved N2O. Measurement of isotope ratios of N2O and its substrates was found to be a useful tool to obtain evidence of denitrification as the main source of N2O production along the Tama River.  相似文献   

17.
18.
K. R. Reddy 《Hydrobiologia》1983,98(3):237-243
Nitrogen and P interchange between the sediments and the overlying water of a simulated retention pond used for wastewater treatment were evaluated under conditions of seasonal temperature fluctuations and varying physico-chemical conditions (exposing floodwater surface to daylight vs. dark and turbulent vs. quiscent floodwater). Natural sediment columns obtained from two types of field retention ponds were used. One type of retention pond consisted of calcareous clay loam sediment while the sediment of second retention pond contained organic soil. Nutrient interchange between sediments and the overlying water was measured once a month over a period of one year. Nitrogen removal rates from floodwater were controlled by the initial floodwater NH 4 + and NO 3 ? concentration, rate of NH 4 + diffusion from the sediments to the overlying water, ammonification in the sediments, NH3 volatilization and nitrification at the sediment-water interface, and denitrification in the sediments. Under the conditions studied, NH 4 + concentrations of the floodwater were in the range of 0.01 to 0.05 µg/ml, while NO 3 ? concentrations were in the range of 0.27 to 0.78 µg/ml. Sediments with organic soil were found to be less effective in the removal of floodwater organic N, organic C and P, compared to the sediments with calcareous clay loam. Phosphorus exchange rates were dependent on the capacity of the sediment to adsorb or desorb P. Total P exchange rates were in the range of ?1.04 to 0.34 mg P/m2 day. Seasonal temperature fluctuations, turbulent vs. quiscent water conditions or exposing the floodwater surface to daylight or dark had very little effect on N and P exchange rates.  相似文献   

19.
One important mechanism plants use to cope with salinity is keeping the cytosolic Na+ concentration low by sequestering Na+ in vacuoles, a process facilitated by Na+/H+ exchangers (NHX). There are eight NHX genes (NHX1 through NHX8) identified and characterized in Arabidopsis thaliana. Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes (MtNHX1, MtNHX2, MtNHX3, MtNHX4, MtNHX6, and MtNHX7). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana, Glycine max, Phaseolus vulgaris, and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~?20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl? contents increased by 152 and 162%, respectively. Na+ exclusion may be responsible for the relatively smaller increase in Na+ concentration in roots under salt stress as compared to Cl?. Decline in tissue K+ concentration under salinity was not surprising as some antiporters play an important role in transporting both Na+ and K + . MtNHX1, MtNHX6, and MtNHX7 display high expression in roots and leaves. MtNHX3, MtNHX6, and MtNHX7 were induced in roots under salinity stress. Expression analysis results indicate that sequestering Na+ into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.  相似文献   

20.
As one of the main species causing “green tides”, Ulva prolifera always inhabits in estuarine areas with changes in salinity and nutrients. Reduced salinity may affect directly or indirectly the processes of uptake and assimilation of nitrate, in which the nitrate reductase (NR) activity play the crucial roles. In this experiment, we investigated the different effects of enriched nitrogen and phosphate on NR activity of Ulva prolifera at salinity 30, 15, and 5 psu. The results showed that when salinity being lowered NR activity decreased under no enrichment (CT) or PO4 3? enrichment condition. NO3 ? or combination with PO4 3? could significantly enhance NR activity at three salinities, among which the highest value occurred at 15 psu. Enrichment of NH4 + significantly decreased NR activity at 30 and 15 psu, but not at 5 psu. The results suggested NR of Ulva prolifera could be triggered by NO3 ?, especially at middle salinity, and keep low when exposed under hyposaline or NH4 + enrichment for long term to rapidly respond to pulse of NO3 ? in estuarine areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号