首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Summary In enzyme histochemistry formazan production can be used as a measure for oxidative enzyme activity. The formazan deposits can be measured quantitatively per cell with a scanning and integrating microspectrophotometer. Optimal conditions are described for the estimation of histochemical succinate dehydrogenase activity in sections of fish bodymusculature and mouse soleus and plantaris muscle. It is shown that when proper measuring conditions are choosen a ditetrazolium salt (TNBT) can be used in quantitative enzyme histochemistry and that the optimal conditions for the histochemical succinate dehydrogenase reaction in muscle fibres of fish and mouse muscle are somewhat different for these two species. The differences in pH, temperature and succinate sensitivity are the most prominent.  相似文献   

2.
Methodological aspects of the histochemical technique for the demonstration of succinate semialdehyde dehydrogenase activity (EC 1.2.1.24) (indicative of the degradative step of gamma-aminobutyric acid catabolism) have been analysed in rat Purkinje neurons, where gamma-aminobutyric acid has been shown to be a neurotransmitter, and in hepatocytes, where it is metabolized. During a histochemical incubation for the enzyme, artefacts of succinate dehydrogenase activity and the 'nothing dehydrogenase' reaction are produced. Inhibition of these artefacts by the addition of two inhibitors, malonate and p-hydroxybenzaldehyde, revealed specific reaction products. Formazan granules, which can be ascribed only to specific succinate semialdehyde dehydrogenase activity, are obtained by adding malonate to the incubation medium in order to inhibit both succinate dehydrogenase activity and nothing dehydrogenase. The formation of these granules is completely inhibited by p-hydroxybenzaldehyde, an inhibitor of succinate semialdehyde dehydrogenase activity. Different levels of succinate semialdehyde dehydrogenase activity were noted in Purkinje neurons. This activity was also found in hepatocytes, mostly in the portal area, but with a lesser degree of intensity and specificity. Indeed, non-specific formazan granules were still produced, because of the 'nothing dehydrogenase' reaction, even in the presence of malonate. Thus, a malonate-insensitive 'nothing dehydrogenase' reaction seems to be present in neural and hepatic tissues.  相似文献   

3.
Summary This report describes a quantitative histochemical study of myoglobin in skeletal muscle fibres. The muscle fibres were classified as fast or slow on the basis of their quantitative myofibrillar ATPase histochemistry. A large range of myoglobin absorbance values was found among fast skeletal muscle fibres. This range was relatively small among slow fibres. The concentrations of myoglobin and the activities of succinate dehydrogenase in individual muscle fibres in serial sections are weakly correlated in both the mouse soleus and plantaris muscle. The myoglobin concentration is higher in fast and slow oxidative soleus muscle fibres and the succinate dehydrogenase activity in these fibres is lower than in oxidative plantaris muscle fibres in the same range of cross-sectional area.  相似文献   

4.
A histochemical analysis of reaction rates of a series of enzymes was performed in electromotor neurons of the weakly electric fish Apteronotus leptorhynchus. These neurons were selected because of their functional homogeneity. The high metabolic activity of these cells as well as their large size facilitate cytophotometric analysis in cryostat sections. Sections were incubated for the activity of hexokinase, glucose-6-phosphate dehydrogenase, succinate dehydrogenase, NADPH dehydrogenase, NADPH ferrihaemoprotein reductase and beta-hydroxybutyrate dehydrogenase. All media contained polyvinyl alcohol as tissue stabilizer and Nitro BT as final electron acceptor. Measurements were performed with a Vickers M85a cytophotometer. Linear relationships between the specific formation of formazan (test minus control reaction) and incubation time were obtained for all enzymes although some reactions showed an initial lag phase or an intercept with the ordinate. The relatively high activities of hexokinase, succinate dehydrogenase and the extremely low activity of hydroxybutyrate dehydrogenase indicate that energy is mainly supplied by glycolysis. Glucose-6-phosphate dehydrogenase showed a high activity whereas NADPH reductase and dehydrogenase activity were low in electromotor neurons, indicating that the NADPH generated is largely used for biosynthesis. Despite their synchronous firing pattern activity, electromotor neurons showed a considerable heterogeneity with respect to their metabolic activity.  相似文献   

5.
An improved spectrophotometric method for measuring succinate dehydrogenase (EC 1.3.99.1) activity with the use of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride (INT) is described. The procedure has been evaluated in mitochondrial fractions and homogenates of frog skeletal muscle. For mitochondrial suspensions, extraction of formazan with alcohol was found to be superior to extraction with ethyl acetate. For homogenates, complete extraction of formazan required sequential treatment with alcohol and ethyl acetate; the generally employed procedure of extracting once with ethyl acetate alone led to serious underestimation of the amount of formazan in the tissue. Observations of mitochondrial suspension incubated with various concentrations of INT led to the selection of 0.8 mM INT for optimal results. Higher concentrations, although commonly used, can exert undesirable inhibitory effects on succinate dehydrogenase activity, especially at low concentrations of mitochondria and after longer periods of incubation. The problem of instability of succinate dehydrogenase was solved by the addition of buffer at pH 7.5.  相似文献   

6.
We describe a cytochemical staining procedure for succinate dehydrogenase (SDH) activity in pre-ovulatory mouse oocytes. The oocytes were embedded in low gelling temperature agarose and treated with caffeine before cytochemical staining in the presence of nitro blue tetrazolium (NBT), phenazinemethosulfate (PMS), and succinate. This resulted in intense staining of the oocytes by formazan precipitate. The level of aspecific formazan production in the absence of succinate was very low. We applied the procedure to oocytes matured in vitro and found that the location of the formazan precipitate as a result of SDH activity correlated well with the location of mitochondria. The chromatin of the cytochemically stained oocytes could subsequently be analyzed by means of the DNA-specific fluorochrome DAPI. In pre-ovulatory oocytes, we found a correlation between chromatin organization and the location of mitochondria: in oocytes with an intact germinal vesicle the mitochondria were uniformly distributed in the cytoplasm, as shown by fine grains of formazan precipitate. In oocytes with condensed chromatin the mitochondria apparently had clustered, because the formazan precipitate was more coarse in these cells.  相似文献   

7.
Several oxidative enzymes [NADH-TR (reduced nicotinamide-adenine dinucleotide-tetrazolium reductase), NADPH-TR (reduced nicotinamide-adenine dinucleotide phosphate-tetrazolium reductase), SDH (succinic dehydrogenase) and LDH (lactate dehydrogenase)] were studied by histochemical means during early development of rat and mouse. All investigated enzymes could be easily demonstrated in zygote and also to some extent in somitic stages without any pretreatment. However, in cleavage and early postimplantation stages enzyme activity could be revealed only after the embryos were pretreated in some way. This pretreatment can be fixation with formalin or acetone, freezing and thawing, slight mechanical damage or very prolonged incubation time. The formazan granules as a sign of enzymatic activity were present in all stages of embryonic development and were more abundant in reactions for NADH-TR and LDH than in reactions for NADPH-TR and SDH. Our results suggest that the investigated enzymes are present in all embryonic cells during early development. It seems that the permeability of embryonic cells for histochemical media must be increased otherwise the histochemical reactions cannot be accomplished.  相似文献   

8.
We established quantitative histochemical assays for the enzymatic activity of succinate dehydrogenase and alpha-glycerol phosphate dehydrogenase for cat skeletal muscle. A computer-enhanced image analysis system was used to quantitate the histochemical enzyme-activity reaction products. We describe a series of experiments that verify the reliability and validity of the assays. Histochemically determined enzyme activities were linear with respect to tissue thickness and reaction time. Biochemically determined enzyme activities were also linear with respect to tissue thickness and incubation time. Consecutive tissue sections, assayed either histochemically or biochemically, were used to establish a linear regression equation that allowed quantitative histochemically determined reaction rates, measured in optical density per minute, to be calibrated as nanomoles per minute.  相似文献   

9.
The paper provides comparative data of the localization of histochemical reactions demonstrating the activities of alpha-glycerophosphate and succinate dehydrogenases, acid phosphatase, non-specific esterases and non-specific acetylcholinesterase in the C cells of thyroids of 26 animals belonging to 5 rodent species. The family Muridae is represented by the Wistar albino rat and albino mouse, the family Microtidae by the bank vole Clethrionomys glareolus (Schreber 1780), the field vole Microtus agrestis L. 1761, and the pine vole Pitymys subterraneus De Selys-Longchamps 1825. The observed enzyme activity differences were most conspicuous on comparing the rat and mouse thyroids and in a much less degree the Microtidae thyroids. Among the histochemical reactions tested that for succinate dehydrogenase proved to be least effective as a C cell marker, alpha-glycerophosphate dehydrogenase being better, and acid phosphatase and non-specific esterases the best (not in the rat thyroid). The reaction for non-specific cholinesterase (with some limitations) gave satisfactory results in the C cells of all animal's thyroids. The present paper continues earlier studies [19] on the morphology of the C cells in thyroid glands of the rodents of the families Muridae and Microtidae and aims at supplementing them with histochemical data of enzymic activities. It deals with enzyme reactions that are employed as C cell markers in Mammals other than Rodents.  相似文献   

10.
Summary The use of unfixed and undecalcified cryostat sections of mouse knee joints is described for the study of enzyme histochemical reactions. Non-inflamed knee joints and knee joints of mice with antigen induced arthritis have been used. Joints were embedded in gelatin and subsequently cut at low speed with a motor-driven cryostat fitted with a tungsten carbide knife at an obtuse angle (10°). The sections were attached to transparent tape to keep the integrity of the tissue intact. The following histochemical reactions were carried out succesfully: the tetrazolium salt reaction for dehydrogenase and reductase activity, the post-azocoupling method for acid phosphatase and cathepsin B activity and the simultaneous azo-coupling method for esterase activity. In all cases the morphology and integrity of the sections were well kept and serial sections were obtained without any difficulty. Nonspecific staining of the tape did not occur. The localization of the final reaction product was meeting criteria for specific and precise histochemical methods with the exception of the metal salt method because of nonspecific staining of undecalcified bone. Cytophotometry of the final reaction product appeared to be reproducible and valid as demonstrated by reaction for glucose-6-phosphate dehydrogenase activity in synoviocytes from knee joints with induced arthritis. End point measurements as well as kinetic measurements of the formazan production were performed and linear relationships were found between the specific formazan formation and section thickness or incubation time, respectively. It is concluded that cryostat sections attached to transparent tape are an excellent tool for the study of the metabolism in tissues adjacent to bone matrix. Changes of enzyme activities in synoviocytes, chondrocytes and osteoclasts during induced arthritis are discussed.  相似文献   

11.
We describe an enzyme histochemical multistep technique for the demonstration of pyruvate kinase activity. In this technique, a semipermeable membrane is interposed between the incubation medium and the tissue sections, thus preventing diffusion of the enzyme into the medium during the incubation period. In this histochemical system, phosphoenolpyruvate (PEP) donates its phosphate group to ADP in a reaction catalysed by pyruvate kinase. Next, exogenous and endogenous hexokinase catalyses the reaction between ATP and D-glucose to yield D-glucose-6-phosphate and ADP. The D-glucose-6-phosphate is oxidized by exogenous and endogenous D-glucose-6-phosphate dehydrogenase, and concomitantly, the generated electrons are transported via NADP+, phenazine methosulphate and menadione to nitro-BT, which is finally precipitated as formazan. Sodium azide and amytal are included to block electron transfer to cytochromes. The method proved to be of value for the qualitative demonstration of pyruvate kinase activity in tissue sections of kidneys, heart muscle and skeletal muscle. For quantitative studies and for investigating the activity of this enzyme in liver sections, the method cannot be recommended.  相似文献   

12.
Reaction rates of succinate and lactate dehydrogenase activity in cryostat sections of rat liver, tracheal epithelium and heart muscle were monitored by continuous measurement of formazan formation by cytophotometry at room temperature. Incubation media contained polyvinyl alcohol as tissue protectant and Tetranitro BT as final electron acceptor. Control media lacked either substrate or substrate and coenzyme. Controls were also performed by adding malonate (a competitive inhibitor of succinate dehydrogenase), pyruvate (a non-competitive inhibitor of lactate dehydrogenase), oxalate (a competitive inhibitor of lactate dehydrogenase) or N-ethylmaleimide (a blocker of SH groups). A specific malonate-sensitive linear test minus control response for succinate dehydrogenase activity was obtained in liver (1.6 mumol H2cm-3 min-1) and tracheal epithelium (0.8 mumol H2cm-3 min-1) but not in heart muscle. All variations in the incubation conditions tested did not result in a linear test minus control response in the latter tissue. Because the reaction was sensitive to malonate, it was concluded that the initial reaction rate was the specific rate of succinate dehydrogenase activity in heart muscle (9.1 mumol H2 cm-3 min-1). Test minus control reactions for lactate dehydrogenase activity were distinctly non-linear for all tissues tested. This appeared to be due to product inhibition by pyruvate generated during the reaction and therefore it was concluded that the appropriate control reaction was the test reaction in the presence of 20 mM pyruvate. The initial rate of the test minus this control was the true rate of lactate dehydrogenase activity. The lactate dehydrogenase activity thus found in liver parenchyma was 5.0 mumol of H2 generated per cm3 liver tissue per min.  相似文献   

13.
We developed a new method for the histochemical demonstration of peroxidase. This method, which has a novel reaction mechanism, is based on the oxidation of phenol by peroxidase and coupling of this reaction to the reduction of a tetrazolium salt, with the deposition of an insoluble formazan at sites of enzyme activity. This new method was compared with an established diaminobenzidine (DAB) technique for peroxidase histochemistry and immunohistochemistry. Although both methods identified peroxidase activity in myeloid cells of bone marrow biopsy specimens, there was no interference from red cell pseudoperoxidase activity with the phenol-tetrazolium method, in contrast to the diaminobenzidine method. The detection of cytokeratin using an indirect immunoperoxidase technique was compared with both methods for demonstrating peroxidase activity. The phenol-tetrazolium method gave results similar to that obtained with DAB and appeared to be at least as sensitive as DAB in detecting low amounts of antigen. In addition, the production of a formazan as the final reaction product means that the phenol-tetrazolium method is ideally suited for quantitative peroxidase histochemistry. Therefore, the phenol-tetrazolium method represents a useful alternative method to DAB and for certain applications offers significant advantages over DAB.  相似文献   

14.
A tetrazolium staining medium incorporated in a gel has been used in a histochemical study of enzymes in thin sections of heart muscle. Formazan distribution patterns given by mitochondrial enzymes were inconsistent with the location of these enzymes revealed by the extraction of whole tissue. Similar stain distributions were given by lactate dehydrogenase, glutamate oxaloacetate transaminase and glutamate dehydrogenase. The distribution given by succinate dehydrogenase was not the same as that given by cytochrome oxidase stained by a different technique. Alcohol dehydrogenase added to the tissue assumed a distribution which suggested some adsorption of the enzyme to the tissue. But experiments suggested that this enzyme was not firmly bound to muscle proteins in the manner of some glycolytic enzymes.  相似文献   

15.
Summary The reliability of enzyme histochemical observations for metabolic studies on skeletal muscle tissue was investigated with a combined histochemical and biochemical study. Specimens of musculus soleus with a predominantly aerobic metabolism and of musculus flexor digitorum longus with a predominantly anaerobic metabolism of rabbits in which both muscles were surgically cross-reinnervated or auto-reinnervated were used. For the histochemical investigation activities and localisations of succinate dehydrogenase, l-glycerol-3-phosphate: acceptor oxidoreductase, nicotinamide adenine dinucleotide: tetrazolium oxidoreductase and of -glucan phosphorylase were examined. For the biochemical investigation maximal activity of phosphofructokinase, the rate limiting enzyme for the regulation of the glycolysis was measured. In addition the activities of succinate dehydrogenase and l-glycerol-3-phosphate: acceptor oxidoreductase to characterize the aerobic metabolism and the key role in gearing energy requirements to glycolysis respectively were biochemically determined. For further information about metabolic aspects the isoenzyme ratio of lactate dehydrogenase was established. In the present paper the histochemical findings are reported and discussed.Part of this study was taken from the Ph. D. thesis of A. C. Jöbsis (1971).  相似文献   

16.
Summary Distribution of succinate dehydrogenase activity along muscle fibres has been studied qualitatively by histochemistry on single microdissected rat muscle fibres and quantitatively by comparative kinetic microphotometry on longitudinal muscle sections. Qualitative staining reactions showed no appreciable variations in enzyme activity along the fibres regardless of fibre type. By quantitative assessment, minor variations were found along fibres but were within the range of the experimental error. These variations are of the same magnitudes as those observed in enzyme activities of pieces of the same fibre by means of quantitative microchemical methods performed in our laboratory (Spamer and Pette 1979; Nemeth et al. 1980a, b). Our results provide evidence that the enzyme levels are the same along the course of a muscle fibre.  相似文献   

17.
The activity of a key mitochondrial enzyme, the alpha-ketoglutarate dehydrogenase complex (KGDHC), declines in the brains of patients with neurodegenerative diseases such as Alzheimer's disease, as well as in thiamine-deficient (TD) animals. The decreased activity often occurs without a reduction in enzyme protein, which negates the use of immunocytochemistry to study cellular or regional changes in enzyme activity within the brain. To overcome this limitation, an activity staining method using nitroblue tetrazolium was developed. The histochemical activity staining was standardized in cultured cells. The assay was linear with time and was highly specific for KGDHC. The dark-blue reaction product (formazan) formed a pattern that was consistent with mitochondrial localization. Treatment of the cultured cells with both reversible and irreversible inhibitors decreased formazan production, whereas conventional enzyme assays on cell lysates only revealed loss of KGDHC activity with irreversible inhibitors. The activity staining was also linear with time and highly specific for KGDHC activity in mouse brain sections. Staining occurred throughout the brain, and discrete neuronal populations exhibited particularly intense staining. The pattern of staining differed markedly from the distribution of KGDHC protein by immunocytochemistry. Generalized decreases in the intensity of activity staining that occurred in the TD brains compared to controls were comparable with the loss of KGDHC activity by conventional enzyme assay. Thus, the present study introduces a new histochemical method to measure KGDHC activity at the cellular and regional level, which will be useful to determine changes of in situ enzyme activity.  相似文献   

18.
The study describes regional changes of xanthine oxidase and succinate dehydrogenase activities as shown by the ischemic and reperfused small intestine of the rat. The results are obtained with enzyme histochemical methods, including densitometrical verifications, and are substantiated with biochemical enzyme determinations. The decrease of xanthine oxidase activity was best visible in the anoxic duodenum and jejunum, where the findings of histochemical enzyme determinations agreed with those achieved biochemically. The activities of succinate dehydrogenase as measured densitometrically may serve as a further control, considering also the typical intracellular distribution of the reaction products.  相似文献   

19.
Summary In the presented study the influence of freezing and freeze-drying on enzyme activity is described. Attention is paid to 16 enzymes which can be used for quantitative enzyme histochemical techniques.With the exception of succinate dehydrogenase only, no significant inactivation during freezing and freeze-drying procedures could be demonstrated with lactate dehydrogenase, malate dehydrogenase (NAD+), malate dehydrogenase (decarboxylating) (NADP+), isocitrate dehydrogenase (NADP+), glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADH-oxydoreductase, mitochondrial glycerol-3-phosphate dehydrogenase, cytochrome c oxidase, phosphoglucomutase, glucosephosphate isomerase, glucose-6-phosphatase, acid phosphatase, -glucuronidase and non specific aryl esterase. Therefore the results supply a sound foundation for those quantitative enzyme histochemical techniques in which tissue specimens are frozen or frozen-dried before enzyme estimations are performed.  相似文献   

20.
R M Rakita  B R Michel  H Rosen 《Biochemistry》1990,29(4):1075-1080
Neutrophil myeloperoxidase, hydrogen peroxide, and chloride constitute a potent antimicrobial system with multiple effects on microbial cytoplasmic membranes. Among these is inhibition of succinate-dependent respiration mediated, principally, through inactivation of succinate dehydrogenase. Succinate-dependent respiration is inhibited at rates that correlate with loss of microbial viability, suggesting that loss of respiration might contribute to the microbicidal event. Because respiration in Escherichia coli can be mediated by dehydrogenases other than succinate dehydrogenase, the effects of the myeloperoxidase system on other membrane dehydrogenases were evaluated by histochemical activity stains of electrophoretically separated membrane proteins. Two bands of succinate dehydrogenase activity proved the most susceptible to inactivation with complete loss of staining activity within 20 min, under the conditions employed. A group with intermediate susceptibility, consisting of lactate, malate, glycerol-3-phosphate, and dihydroorotate dehydrogenases as well as three bands of glucose-6-phosphate dehydrogenase, was almost completely inactivated within 30 min. The relatively resistant group, including the dehydrogenases for glutamate, NADH, and NADPH and the remaining bands of glucose-6-phosphate dehydrogenase, retained substantial amounts of diaphorase activity for up to 60 min of incubation with the myeloperoxidase system. The differential effects of myeloperoxidase on dehydrogenase inactivation could not be correlated with published enzyme contents of flavin or iron-sulfur centers, potential targets of myeloperoxidase-derived oxidants. Despite the relative resistance of NADH dehydrogenase/diaphorase activity to myeloperoxidase-mediated inactivation, electron transport particles prepared from E. coli incubated for 20 min with the myeloperoxidase system lost 55% of their NADH oxidase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号