首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 775 毫秒
1.
Glutamate overcomes the salt inhibition of DNA polymerase III holoenzyme   总被引:2,自引:0,他引:2  
Even though Escherichia coli can grow in media containing up to 1 M NaCl, one-fifth that amount of NaCl will completely inhibit the in vitro activity of DNA polymerase III holoenzyme. It has been established that the major intracellular ionic osmolytes are potassium and glutamate (Richey, B., Cayley, D. S., Mossing, M. C., Kolka, C., Anderson, C. F., Farrar, T. C., and Record, M. T., Jr. (1987) J. Biol. Chem. 262, 7157-7164). We have found that holoenzyme catalyzes replication efficiently in vitro in up to 1 M potassium glutamate. Two salt effects on the replication of single-stranded DNA were observed. At low salt replicative activity was enhanced and at high salt there was anion-specific inhibition. We have found that DNA polymerase III holoenzyme tolerated 10-fold higher concentrations of glutamate than chloride. The ability of various anions to extend the useful range of salt concentrations followed the order: phosphate less than chloride less than N-Ac-glutamate less than acetate less than glycine less than aspartate less than glutamate. With the exception of phosphate, this order followed the Hofmeister series indicating that the anion-specific effects were due to anions interacting at the protein-water interface at weak anion binding sites. Glutamate did not reverse the inhibition by chloride. The low salt enhancement and high salt inhibition effects were additive for the two anions indicating that they competed for common anion binding sites. The major salt-sensitive step was holoenzyme binding to template rather than the subsequent elongation reaction.  相似文献   

2.
Replication of simian virus 40 (SV40) chromatin in vitro is inhibited by chloride but stimulated by acetate anions even at physiological concentrations of 100-200 mM. In a similar fashion DNA polymerase alpha is affected with respect to the activity with activated DNA as primer template. Furthermore, at concentrations of 100-200 mM acetate DNA polymerase alpha remains associated with replicating chromatin, whereas association is strongly reduced when chloride anions are used at the corresponding concentrations. Thus the salt behaviour of DNA polymerase alpha explains the salt sensitivity of the replication system. Our results confirm the importance of this enzyme for DNA replication.  相似文献   

3.
The interaction between Escherichia coli RNA polymerase and a restriction fragment of coliphage T7 DNA containing four promoter sites for the coli enzyme has been studied by difference uv absorption spectroscopy in a low ionic strength buffer containing 10 mm MgCl2 and 50 mM KCl. The binding of the enzyme to the DNA is accompanied by a hyperchromic shift which shows a maximum around 260 nm, and increases with increasing temperature in the temperature range studied (4-40 degrees C). Measurements were also carried out with whole T7 DNA and a restriction fragment containing no promoter site. A comparison of the results obtained with the various DNAs suggests that the binding of an RNA polymerase to a promoter site in the low ionic strength medium causes the disruption of a short segment of the DNA helix, of the order of ten pairs; the binding of an enzyme molecule to a promotor site appears to have a cooperative effect on the binding of the enzyme molecules to adjacent non-promoter sites with concomitant disruption of DNA base pairs.  相似文献   

4.
5.
A-to-I RNA editing is particularly common in coding regions of squid mRNAs. Previously, we isolated a squid editing enzyme (sqADAR2) that shows a unique structural feature when compared with other ADAR2 family members: an additional double-stranded RNA (dsRNA) binding domain (dsRBD). Alternative splicing includes or excludes this motif, generating a novel or a conventional variant termed sqADAR2a and sqADAR2b, respectively. The extra dsRBD of sqADAR2a increases its editing activity in vitro. We hypothesized that the high activity is due to an increase in the affinity of the enzyme for dsRNA. This may be important because protein-RNA interactions can be influenced by physical factors. We became particularly interested in analyzing the effects of salt on interactions between sqADAR2 and RNA because squid cells have a ~3-fold higher ionic strength and proportionally more Cl(-) than vertebrate cells. To date, in vitro biochemical analyses of adenosine deamination have been conducted using vertebrate-like ionic strength buffers containing chloride as the major anion, although the vast majority of cellular anions are known to be organic. We found that squid-like salt conditions severely impair the binding affinity of conventional ADAR2s for dsRNA, leading to a decrease in nonspecific and site-specific editing activity. Inhibition of editing was mostly due to high Cl(-) levels and not to the high concentrations of K(+), Na(+), and organic anions like glutamate. Interestingly, the extra dsRBD in sqADAR2a conferred resistance to the high Cl(-) levels found in squid neurons. It does so by increasing the affinity of sqADAR2 for dsRNA by 30- or 100-fold in vertebrate-like or squid-like conditions, respectively. Site-directed mutagenesis of squid ADAR2a showed that its increased affinity and editing activity are directly attributable to the RNA binding activity of the extra dsRBD.  相似文献   

6.
L-Lysine:2-oxoglutarate 6-aminotransferase catalyzes very slow transamination between L-alanine and 2-oxoglutarate. A high concentration of anions such as formate, acetate and halides greatly accelerated this transamination without affecting the affinity of the enzyme for L-alanine. In contrast, the anions strongly inhibited the normal L-lysine 6-transamination in a competitive manner with L-lysine and in a non-competitive manner with 2-oxoglutarate. This result suggests that the enzyme has an anion binding site which normally binds the carboxyl group of L-lysine. The binding of halides or carboxylates to this site probably induces a conformational change of the enzyme, and results in the inhibition of L-lysine 6-transamination, and in the stimulation of L-alanine transamination. Treatment of the enzyme with an arginine-specific dicarbonyl reagent, phenylglyoxal, led to a loss of the enzyme activity for L-lysine. The activity for L-alanine was not affected, but the stimulating effect of anions on L-alanine transamination was impaired. Thus, it is suggested that an arginine residue(s) plays an important role in the anion binding site.  相似文献   

7.
Initiation of T7 RNA chains by Escherichia coli RNA polymerase-T7 DNA complexes has been followed using incorporation of λ-32P-labeled ATP and GTP to determine the relation between the enzyme binding sites and RNA chain initiation sites on the T7 genome. If the period of RNA synthesis is limited to less than two minutes, the stoichiometry of RNA chain initiation can be measured in the absence of chain termination and re-initiation. About 70% of the RNA polymerase holoenzyme molecules in current enzyme preparations are able to rapidly initiate a T7 RNA chain. The ratio of ATP- to GTP-initiated T7 RNA chains is not altered by variations in the number of enzyme molecules added per DNA, nor by alterations in the ionic conditions employed for RNA synthesis. This suggests that RNA chain initiation sites are chosen randomly through binding of RNA polymerase to tight (class A) binding sites on T7 DNA.  相似文献   

8.
9.
A comparison of the 3'----5' proofreading properties between Escherichia coli DNA polymerase III holoenzyme and DNA polymerase III' was conducted. This study indicated that the influence of the holoenzyme auxiliary subunits on the proofreading exonuclease parallels their effect on the elongation reaction. At physiological ionic strengths the auxiliary subunits markedly stimulated the exonuclease rate in an ATP-dependent reaction, while the exonuclease rate of DNA polymerase III' was not affected by ATP. E. coli single-stranded DNA binding protein stimulated the 3'----5' exonuclease activity of holoenzyme and inhibited DNA polymerase III'. Similarly, the auxiliary subunits and ATP converted the proofreading activity to a highly processive exonuclease. Our observation, that the exonuclease activity of the DNA polymerase III holoenzyme responded to ATP, salt, and E. coli single-stranded DNA-binding protein like the elongation activity, is consistent with the polymerase and exonuclease subunits acting within the same complex in a coordinated reaction.  相似文献   

10.
Ribonucleic acid (RNA) synthesis primed by bacteriophage T4 or lambda deoxyribonucleic acid (DNA) with Bacillus subtilis RNA polymerase is severely inhibited by high ionic strength. In contrast, RNA synthesis on B. subtilis bacteriophage 2C, SPO1, or phi29 DNA is only moderately affected under similar conditions. The basis of this inhibition lies in the inability of the enzyme to initiate RNA chains with adenosine triphosphate or guanosine triphosphate (ATP, GTP). Binding to templates and the rate of catalysis in high salt after initiation do not seem to be affected. Incorporation of gamma-(32)P-ATP and GTP under a variety of conditions suggests that the specificity of B. subtilis RNA polymerase is different from that of the Escherichia coli enzyme and that it recognizes few promoters on T4 and lambda DNA. Although B. subtilis RNA polymerase initiates RNA chains primarily with ATP or GTP, initiations with pyrimidines can occur on DNA molecules in which hydroxymethyluracil replaces thymine. RNA synthesis on denatured DNA does not seem to be inhibited by high ionic strength, and on native T4 or lambda DNA the inhibition of initiation at constant ionic strength is inversely but not linearly proportional to the ionic radii of cations used to stabilize bihelical DNA to denaturation.  相似文献   

11.
DNA polymerase III of Escherichia coli requires multiple auxiliary factors to enable it to serve as a replicative complex. We demonstrate that auxiliary components of the DNA polymerase III holoenzyme, the gamma delta complex and beta subunit, markedly stimulate DNA polymerase II on long single-stranded templates. DNA polymerase II activity is enhanced by single-stranded DNA binding protein, but the stimulation by gamma delta and beta can be observed either in the absence or presence of single-stranded DNA binding protein. In contrast with DNA polymerase III, the requirement of DNA polymerase II for gamma delta cannot be bypassed by large excesses of the beta subunit at low ionic strength in the absence of the single-stranded DNA binding protein. The product of the DNA polymerase II-gamma delta-beta reaction on a uniquely primed single-stranded circle is of full template length; the reconstituted enzyme apparently is incapable of strand displacement synthesis. The possible biological implications of these observations are discussed.  相似文献   

12.
M Okada  J Vergne    J Brahms 《Nucleic acids research》1978,5(6):1845-1862
E. Coli RNA polymerase binding to different DNAs (from E. Coli, 5-bromodeoxyuridine (BrdUrd) substituted DNA and poly [d(BrU-A)] was induced with ultraviolet (U.V.) light to form protein-DNA crosslinked complexes. Two independent methods of analysis, polyacrylamide gel electrophoresis in SDS and chloroform extraction indicated the formation of a stable complex between the enzyme and DNA. The complexes were formed under different ionic strength conditions, at low enzyme to DNA ratios in order to approach the conditions of specific binding. In contrast there was no crosslinking of the complex in 1 M KCl solution which dissociates the enzyme from DNA. The efficiency of formation of strongly bound complex was found to be much higher with holoenzyme than with core enzyme. The following results were obtained : 1) The large subunits beta and beta' were found to be bound to DNA. 2) Relatively small amount of sigma subunit were bound to DNA while alpha subunits were essentially not attached to DNA. The high binding affinity of beta and beta' subunits was also observed in the studies of isolated subunits. These results lead to a model of enzyme-DNA complex in which the large beta and beta' subunits provide the contacts between the RNA polymerase and the DNA.  相似文献   

13.
Hemoglobin Leiden is an abnormal human hemoglobin in which a glutamic acid residue has been deleted from the β-chain at position 6 or 7. The α-amino groups of the β-chain N-termini in tetrameric hemoglobin A are thought to be directly involved in the binding of simple anions and organic phosphates (1). The deletion of the 4th or 5th residue of the A helix in hemoglobin Leiden shortens the N-terminus of the β-chain, and the results reported here show that the anion binding site has been affected. Hemoglobin Leiden shows a decreased response to inorganic phosphate, chloride, 2,3-diphosphoglycerate, and inositol hexaphosphate, both in equilibria and kinetics of ligand binding. Although hemoglobin Leiden shows an altered response to anions, neither the cooperativity of ligand binding nor the Bohr effect are significantly altered by the deletion. The decreased effect of cofactors seems to be due to a decrease in the strength of anion binding which may be attributed to the altered geometry of the anion binding site.  相似文献   

14.
A high molecular weight membrane-bound DNA polymerase from the mouse myeloma, MOPC-104E, has been purified extensively, and characterized with regard to physical and reaction properties. This enzyme, which is readily distinguishable from other myeloma enzymes that are analogous to the recognized forms of cellular DNA polymerase, is ddesignated DNA polymerase III. DNA polymerase III activity in whole homogenates from MOPC-104E was solubilized and then prurifed using a series of ion-exchange chromatographic procedures followed by DNA-cellulose chromatography and glycerol gradient centrifugation; the enzyme activity as measured with poly(rA)-(dT)12-18 as template-primer and Mn2+ as divalent cation, was purified as much as 18,000-fold. In the final stages of the pruification, DNA polymerase III possessed no detectable RNA polymerase activity, nucleoside diphosphokinase activity, or nucease activity toward DNA or single- and double-stranded RNA...  相似文献   

15.
The kinetics of the interaction between deionized supernatant aspartic aminotransferase and various anions (cacodylate, phosphate and chloride) were studied by the temperature-jump technique. The anion concentration in the range covered by our experiments does not affect the transamination rate. On the other hand the conformational transition, recently observed at the active site of the enzyme, is hindered by an excess of anions. A single relaxation effect was observed at the enzyme chromophore wavelength in systems containing the aldimine form of the enzyme and the above anions. It is shown that this effect corresponds to the protonation of the chromophore. The relaxation times were of about 10 mus with phosphate, 20-100 mus with cacodylate and 1-2 ms with chloride. The pH and concentration dependence of this effect were studied. The fits of experimental data to a rate equations for various models were tested by a chi2 analysis. The best fit was obtained with models where anions bind rapidly to a site close to the chromophore, so that the pK of the chromophore is affected by anions binding. The rate of the observed relaxation considerably increased when the anion has buffering capacities; this indicates, in the case of cacodylate and phosphate, that the acidic component of the buffer directly exchanges a proton with the enzyme chromophore.  相似文献   

16.
We have investigated quantitative molecular aspects of the interaction of recA protein with single-stranded DNA, by using a fluorescent modified-DNA referred to as etheno-M13 DNA. In addition, the effects of the nucleotide cofactors ATP and ADP, and the analogues ATP-gamma-S, AMP-P-C-P, and AMP-P-N-P on this interaction have been studied. It is shown that ATP, AMP-P-N-P and, in particular, ATP-gamma-S significantly increase the affinity of recA protein for single-stranded DNA, whereas ADP and, to a lesser degree, AMP-P-C-P decrease the affinity. Binding to etheno-M13 single-stranded DNA is co-operative, with the value of the co-operativity parameter, omega, being approximately 50 under all conditions measured. The effect that ADP has on recA protein-DNA affinity is to lower the intrinsic binding constant, but it has no effect on the co-operativity of binding. In addition, the stability of the recA protein-DNA complex is very salt dependent (d log K/d log [NaC1] approximately -10) and it is the intrinsic binding affinity rather than the co-operativity of binding that is affected; thus, under all conditions observed, recA protein binds single-stranded DNA co-operatively with a value of omega = 50 +/- 10. The binding affinity is also influenced by the type of anion present, being approximately 10,000-fold higher when acetate ion is present instead of chloride ion. These data have been interpreted to suggest that recA protein forms up to five ionic interactions when it binds to single-stranded DNA and that five to six anions are displaced upon binding. The modulation of recA protein-DNA complex stability by nucleotide cofactors suggests that these cofactors play a role in the cycling of recA protein on and off single-stranded DNA, with ATP being required for DNA binding under physiological conditions and ADP serving as a "release" factor. These results are discussed in terms of a model for the role of ATP hydrolysis in a recA protein-single stranded DNA binding cycle.  相似文献   

17.
The effect of anions and deuterated water on the kinetics of action of pig pancreatic phospholipase A2 is examined to elaborate the role of ionic interactions in binding of the enzyme to the substrate interface. Anions and deuterated water have no significant effect on the hydrolysis of monomeric substrates. Hydrolysis of vesicles of DMPMe (ester) is completely inhibited in deuterated water. The shape of the reaction progress curve is altered in the presence of anions. The nature and magnitude of the effect of anions depends upon the nature of the substrate as well as of the anion. Substantial effects of anions on the reaction progress curve are observed even at concentrations below 0.1 M and the sequence of effectiveness for DMPMe vesicles is sulfate greater than chloride greater than thiocyanate. Apparently, anions in the aqueous phase bind to the enzyme, and thus compete with the anionic interface for binding to the enzyme. Binding of the enzyme to anionic groups on the interface results in activation and increased accessibility of the catalytic site possibly via hydrogen bonding network involving water molecule. In order to elaborate the role of the N-terminus region in interfacial anchoring, the action of several semisynthetic pancreatic phospholipase A2s is examined on vesicles of anionic and zwitterionic phospholipids. The first-order rate constant for the hydrolysis of DMPMe in the scooting mode by the various semisynthetic enzymes is in a narrow range: 0.7 +/- 0.15 per min for phospholipase A2 derived from pig pancreas and 0.8 +/- 0.4 per min for the enzymes derived from bovine pancreas. In all cases a maximum of about 4300 substrate molecules are hydrolyzed by each phospholipase A2 molecule. If anions are added at the end of the first-order reaction progress curve, a pseudo-zero-order reaction progress curve is observed due to an increased intervesicle exchange of the bound enzyme. These rates are found to be considerably different for different enzymes in which one or more amino acids in the N-terminus region have been substituted. Steady-state and fluorescence life-time data for these enzymes in water, 2H2O and in the presence of lipids is also reported. The kinetic and binding results are interpreted to suggest that the N-terminus region of phospholipase A2 along with some other cationic residues are involved in anchoring of phospholipase A2 to the interface, and the catalytically active enzyme in the interface is monomeric.  相似文献   

18.
19.
20.
Two of the adenovirus capsid proteins, the fiber and the hexon, complexed with either KB cell or type 5 adenovirus deoxyribonucleic acid (DNA). Maximal binding occurred at 0.01 m NaCl; increasing the ionic strength of the reaction mixture to 0.2 m NaCl resulted in a decrease in the association of either antigen to DNA. Variations of pH between 6.3 and 8.4 did not affect the binding of fiber antigen to DNA. Below pH 7.5, however, there was a small decrease in the ability of the hexon to bind nucleic acid. The association between the adenovirus structural proteins and DNA was reversible and was independent of whether the DNA was native or denatured. The fiber or hexon protein inhibited the DNA-dependent ribonucleic acid (RNA) polymerase and the DNA polymerase from KB cells. On a weight basis, the fiber protein inhibited enzymatic activity to a greater extent than the hexon. Increasing the template DNA concentration decreased this inhibition. The inhibition of the DNA-dependent RNA polymerase activity by either antigen could be reversed by increasing the ionic strength of the reaction mixture. After infection of KB cells with type 5 adenovirus, the levels of DNA and RNA polymerases remained unchanged for 15 to 20 hr. Thereafter, the specific activity of both enzymes decreased. By 30 hr postinfection, the polymerase activities were only about 30% of the enzyme activities in uninfected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号