首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We examined the effect of environmental patchiness on the spatial segregation of the sexes in the dioecious anemophilus grass Poa ligularis. Because the species is sensitive to grazing, a better understanding of environmental factors that control its spatial distribution and abundance could improve conservation efforts. We hypothesized that (i) males and females are spatially segregated in the microenvironments created by plant patches as the result of sexual specialization in habitat and/or resources use, (ii) sexual specialization is related to different tolerance to competition and reproductive costs of males and females, and (iii) changes in patch structure affect the microenvironment and the intensity of spatial segregation of the sexes. We analyzed the spatial distribution of sexes at three sites with different plant and micro-environmental patchiness and performed a controlled competition experiment with different substitution of males and females. Our results showed that large plant patches created larger sheltered soil fertility islands than small patches. As patch size and their area of influence increased, the density and the spatial segregation of the sexes of P. ligularis also increased, resulting in biased habitat-specific sex ratios. In accordance with their higher reproductive costs, females were more frequent in sheltered (low air evaporative demand) and nitrogen-rich areas inside patch perimeters than males. Females were also better able to tolerate inter-sexual competition than males. In contrast, males tolerated low nitrogen concentration in soil and low sheltering, probably gaining advantage in pollen dispersal. Inter- and intra-sexual competition, however, affected the reproductive output of both sexes. From the point of view of conservation, environmental patchiness is important to the status of P. ligularis populations. The reduction of patch size limits the available microsites, biases the sex ratio towards males inside patches, increases inter- and intra-sexual competition, and it might be expected to decrease overall seed and pollen production and consequently potential recruitment.  相似文献   

2.
Since pollen usually travels limited distances in wind-pollinated plant species, plants growing at low density may become pollen limited. We examined how local pollen availability and population density affect reproductive success in two wind-pollinated, dioecious species, Thalictrum fendleri and Thalictrum dioicum. Distance to the nearest flowering male, the number of flowering males within 2 m, and flower number on those males served as measures of local pollen availability. Increased distance from pollen donors reduced seed set in the lowest-density population of each species, but seed set in high-density populations was not correlated with local pollen availability. For plants in high- and low-density populations at similar distances from pollen donors, this distance only affected seed set in low-density populations. To ensure that differences in resource availability were not causing spurious correlations between seed set and plant density, we constructed low-density artificial arrays in populations of T. dioicum. In these, seed set decreased rapidly with increases in distance from pollen donors. Despite these effects, the density of males in a population was not correlated with average seed set in T. dioicum, and hand pollination in the T. dioicum populations also failed to increase seed set over natural levels. These results suggest that pollen receipt only limits seed set on isolated plants within low- density populations of T. dioicum and T. fendleri.  相似文献   

3.
Since most pollen travels limited distances in wind-pollinated plants, both the local quantity and diversity of mates may limit female reproductive success. Yet little evidence exists on their relative contribution, despite the importance of viable seed production to population dynamics.To study how variation in female reproductive success is affected by the quantity versus the diversity of surrounding mates contributing pollen, we integrated pollination experiments, data on natural seed set and seed viability, and AFLP genetic marker data in the wind-pollinated dioecious clonal forest herb Mercurialis perennis.Pollination experiments indicated weak quantitative pollen limitation effects on seed set. Among-population crosses showed reduced seed viability, suggesting outbreeding depression due to genetic divergence. Pollination with pollen from a single source did not negatively affect reproductive success. These findings were consistent with results of the survey of natural female reproductive success. Seed set decreased with the distance to males in a female plants’ local neighborhood, suggesting a shortage of pollen in isolated female plants, and increased with the degree of local genetic diversity. Spatial isolation to other populations and population size did not affect seed set. None of these variables were related to seed viability.We conclude that pollen movement in M. perennis is likely very limited. Both male proximity and the local degree of genetic diversity influenced female reproductive success.  相似文献   

4.
Eppley SM 《Oecologia》2006,146(4):549-554
If males and females of a species differ in their effect on intraspecific competition then this can have significant ecological and evolutionary consequences because it can lead to size and mortality disparities between the sexes, and thus cause biased population sex ratios. If the degree of sexual dimorphism of competitive effect varies across environments then this variation can generate sex ratio variation within and between populations. In a California population of Distichlis spicata, a dioecious grass species exhibiting extreme within-population sex ratio variation (spatial segregation of the sexes), I evaluated the intraspecific competitive effects of male and female D. spicata seedlings in three soil types. The sex of seedlings was determined using a RAPD-PCR marker co-segregating with female phenotype. Distichlis spicata seedlings, regardless of sex, were six times larger when grown with male versus female conspecific seedlings in soil from microsites where the majority of D. spicata plants are female, and this sexual dimorphism of competitive effect was weaker or did not occur in other soil types. This study suggests that it is not just the higher costs of female versus male reproduction itself that cause spatial segregation of the sexes in D. spicata, but that differences in competitive abilities between the sexes—which occur as early as the seedling stage—can generate sex ratio variation.  相似文献   

5.
In order to assess the mechanisms through which the spatial structure of the population influences female reproductive success, spatial distribution of clones, degrees of limitation of legitimate (inter-morph) pollination, type and abundance of pollen loaded on the stigmas, and seed set were measured for many clones of two natural populations of the distylous clonal plant,Persicaria japonica. Within the populations, according to the spatial relation to the nearest opposite morph clone, individual clones were assorted into two spatial types,i.e., clones that congregated with clones of the opposite morph (congregating clones), and clones that occurred singly at a considerable distance from the nearest opposite-morph clone (single clones). The pollination success,i.e., the proportion of legitimately pollinated flowers, and seed set were severely limited in the single clones compared to the congregating clones. Since artificial legitimate pollination improved the seed set in single clones, at least to some degree pollination failure was responsible for the reduced seed set in the single clones.  相似文献   

6.
Sex ratio, size, age, and spatial pattern were investigated for males and females of the dioecious shrub Ceratiola ericoides ericoides (Empetraceae) Michx. within seven mapped populations in Georgia and South Carolina, USA. Among the sites studied, two are regularly burned and one site long-unburned. Age was estimated from node counts of individual shrubs. Only one (fire-suppressed) population showed a female-biased sex ratio, while all others did not differ significantly from 1:1. Mean age estimates did not differ between sexes at any site nor did mean shrub canopy diameter. Bivariate Ripley’s K analysis with a null hypothesis of random labeling was used to investigate whether any of the mapped populations exhibited spatial segregation of the sexes (SSS). No population showed strong evidence of SSS. Rather all sites but one showed males and females to be associated (though not significantly) at a scale of 1–10 m. At a scale of 10–35 m male and female shrubs were located randomly with respect to one another at all sites.  相似文献   

7.
A recent literature review indicates that pollen limitation of female fertility is a common feature of flowering plants. Despite the ecological and evolutionary significance of pollen limitation, most studies have only examined fertility in a single population at one time. Here we investigate pollen limitation of fruit and seed set in five populations of Narcissus assoanus, a self- sterile, insect-pollinated geophyte, over 2–3 years in southern France. In common with many early spring flowering plants, pollinator visitation to N. assoanus is often infrequent. Supplemental hand-pollination of flowers with outcross pollen significantly increased overall fruit and seed set by 11% and 19%, respectively. Four of the five populations experienced some pollen limitation during the study. For a given year, there was significant variation in pollen limitation among populations. Two of the populations were pollen limited in one year but not in other years in which they were studied. Seed:ovule ratios for open- and hand-pollinated flowers averaged 0.29 and 0.33, respectively. While hand pollination significantly increased the seed:ovule ratio, the low value obtained indicates that the majority of ovules in flowers do not mature seeds despite hand pollination. The role of genetic and environmental factors governing low seed:ovule ratios in N. assoanus is discussed. Received: 28 December 1999 / Accepted: 6 April 2000  相似文献   

8.
Habitat-corridors are assumed to counteract the negative impacts of habitat loss and fragmentation, but their efficiency in doing so depends on the maintenance of ecological processes in corridor conditions. For plants dispersing in linear habitats, one of these critical processes is the maintenance of adequate pollen transfer to insure seed production within the corridor. This study focuses on a common, self-incompatible forest herb, Trillium grandiflorum, to assess plant–pollinator interactions and the influence of spatial processes on plant reproduction in hedgerow corridors compared to forests. First, using pollen supplementation experiments over 2 years, we quantified the extent of pollen limitation in both habitats, testing the prediction of greater limitation in small hedgerow populations than in forests. While pollen limitation of fruit and seed set was common, its magnitude did not differ between habitats. Variations among sites, however, suggested an influence of landscape context on pollination services. Second, we examined the effect of isolation on plant reproduction by monitoring fruit and seed production, as well as pollinator activity and assemblage, in small flower arrays transplanted in hedgerows at increasing distances from forest and from each other. We detected no difference in the proportion of flowers setting fruit or in pollinator activity with isolation, but we observed some differences in pollinator assemblages. Seed set, on the other hand, declined significantly with increasing isolation in the second year of the study, but not in the first year, suggesting altered pollen transfer with distance. Overall, plants in hedgerow corridors and forests benefited from similar pollination services. In this system, plant–pollinator interactions and reproduction seem to be influenced more by variations in resource distribution over years and landscapes than by local habitat conditions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The spatial distribution of females and hermaphrodites within gynodioecious populations is expected to exert considerable selective pressure on gender fitness through pollen limitation of seed set. If pollen flow is predominantly local, seed set in individual plants may be sensitive to the proximity of pollen donors; pollen limitation of seed set may occur if hermaphrodites are locally rare. Under such circumstances, female fitness will be negatively frequency dependent and hermaphrodite fitness will be positively frequency dependent. Given local seed dispersal, a nonrandom clumped distribution of the genders is expected in gynodioecious populations due to the heritability of gender in gynodioecious species. If gender fitness is frequency dependent, such structure should favor hermaphrodites and select against females. To test this hypothesis, I quantified the distribution of the genders in terms of nearest neighbors and neighborhood sex ratio in two populations of gynodioecious Sidalcea malviflora malviflora. I then measured the effect of neighborhood sex ratio on open-pollinated seed set and pollen limitation in both manipulated and unmanipulated neighborhoods. Results indicate that the genders have a patchy distribution and that both genders are pollen limited and show an increase in seed set with an increase in neighborhood hermaphrodite frequency. The observed population sex structure favors hermaphrodites and disadvantages females. These results highlight the importance that population-level traits can have in determining individual fitness and the evolution of sex ratios in gynodioecious species.  相似文献   

10.
McCall AC 《Oecologia》2008,155(4):729-737
While herbivory has traditionally been studied as damage to leaves, florivory – herbivory to flowers prior to seed set – can also have large effects on plant fitness. Florivory can decrease fitness directly, either through the destruction of gametes or through alterations to plant physiology during fruit set, and can also change the appearance of a flower, deterring pollinators and reducing seed set. In order to distinguish between these hypotheses, it is necessary to both damage flowers and add pollen in excess to study the effects of damage on pollen limitation. Very few studies have used this technique over the lifetime of a plant. Here I describe a series of experiments showing the effects of natural and artificial damage on reproductive success in the annual plant Nemophila menziesii (Hydrophyllaceae, sensu lato). I show that natural and artificial petal damage decreased radial symmetry relative to controls and that both types of damage deterred pollinator activity. Both naturally damaged flowers and artificially damaged flowers in the field set fewer fruit or seed relative to undamaged control flowers. Finally, in an experiment crossing artificial petal damage with pollen addition, petal damage alone over the lifetime of this plant decreased female fitness, but only after a threshold of damage was reached. The fitness effect appeared to be direct because there was no detectable effect of pollen addition on the relationship between florivory and fitness. This result implies that both damaged and undamaged plants show similar amounts of pollen limitation and suggests that pollinator-mediated effects contributed little to the negative effects of florivory on female fitness. Florivores may thus be an under-appreciated agent of selection in certain plants, although more experimental manipulation of florivory is needed to determine if it is important over a range of taxa.  相似文献   

11.
Disanthus cercidifolius Maxim. var. longipes H. T. Chang, a plant species that only occurs in a few counties in Hunan, Jiangxi and Zhejiang Provinces and with a relatively small number of individuals, is ranked as a second Class endangered species for conservation in China. We have studied the effect of pollen and resources available to female reproduction, and the reproductive mechanism of “excess flowers with low fruit set” in Disanthus cercidifolius Maxim. var. longipes H. T. Chang was discussed. Results are as follows Pollen from different sources has significant effects on fruit set and seed set of Disanthus cercidifolius Maxim. var. longipes H. T. Chang. The pollen source rather than pollen numbers significantly affected reproduction of this species. In wild populations, producing one fruit needs about 54.8 flowers, and one satiation seed needs about 6.60 flowers or 83.19 ovules. After fertilizing, which was propitious to flower development, the abortion rate of flower buds was decreasing, but the flowering rate was increasing. The fruit set and seed set was also significantly increasing, while abortion rate of fruit was significantly decreasing. With the increasing percentages of cutting leaves, the fruit set decreased, but the abortion rate of fruit shows no significant differentiation among treatments. After cutting branches that were puny, broken and insectin-fested branches, the flower number seemed to be decreasing, but the fruit set and seed set all increased significantly. After removing some flowers, the fruit set was calculated with respect to the number of flowers remaining after the treatment increased with increasing of percentages of flower removal, whereas fruit set calculated with respect to the initial number of flowers remained constant, and the mean weights of per fruit and per seed all decreased significantly. Sufficient spatial or temporal heterogeneities in nutrient levels might allow limitation of seed set by resources and pollen in a natural population, while supplying resources may indirectly affect pollination by increasing attraction of the flowers to pollinators. There were very low fruit and seed sets in natural populations of Disanthus cercidifolius Maxim. var. longipes H. T. Chang. Different factors may have interacted to effect a low fruit set. A joint adoption of the “selection abortion hypothesis”, “ovary reserve hypothesis” and “male function hypothesis” seems to be the most likely explanation for the reproductive strategy of “excess flowers with few fruit sets” in Disanthus cercidifolius Maxim. var. longipes H. T. Chang. __________ Translated from Acta Ecologica Sinica, 2006, 26(2): 496–502 [译自: 生态学报]  相似文献   

12.
The mutualism between fig plants and fig wasps has been recognized as one of the most specialized systems of symbiosis. Figs are pollinated by their highly specific pollinating fig wasps, and the pollinating fig wasps are raised within the syconia of figs. Recent studies indicated a difference between monoecious and dioecious figs in the dispersal range of pollinating wasps, which has potential consequences for gene flow. In this study, we detected the gene-flow pattern of the dioecious climbing fig, Ficus pumila L. var. pumila, at both local and regional scales. At the local scale, spatial autocorrelation analysis indicated strong genetic structure at short distances, a pattern of limited gene flow. This result was also supported by a high inbreeding coefficient (F IS = 0.287) and significant substructuring (F ST = 0.060; P < 0.001). Further analysis indicated that the effective gene dispersal range was 1,211 m, and the relative contribution of seed dispersal was smaller than that of pollen dispersal. The inferred effective range of pollen dispersal ranged from 989 to 1,712 m, while the effective seed dispersal range was less than 989 m. Lack of long-distance dispersal agents may explain the limited seed dispersal. The high density of receptive fig trees was the most likely explanation for limited pollen dispersal, and the position of syconia and relatively low wind speed beneath the canopy may contribute to this phenomenon. At the regional scale, significant negative correlations (kinship coefficient F ij ranging from −0.038 to −0.071) existed in all comparisons between the studied population and other populations, and the assignment test grouped almost all individuals of the studied population into a distinct cluster. Asynchronous flowering on the regional scale, which provides a barrier for the pollinating wasps to fly from the studied population to the other populations, is probably responsible for the limited gene flow on the regional scale.  相似文献   

13.
Floral traits that increase attractiveness to pollinators are predicted to evolve through selection on male function rather than on female function. To determine the importance of male-biased selection in dioecious Wurmbea dioica, we examined sexual dimorphism in flower size and number and the effects of these traits on pollinator visitation and reproductive success of male and female plants. Males produced more and larger flowers than did females. Bees and butterflies responded to this dimorphism and visited males more frequently than females, although flies did not differentiate between the sexes. Within sexes, insect pollinators made more visits to and visited more flowers on plants with many flowers. However, visits per flower did not vary with flower number, indicating that visitation was proportional to the number of flowers per plant. When flower number was experimentally held constant, visitation increased with flower size under sunny but not overcast conditions. Flower size but not number affected pollen removal per flower in males and deposition in females. In males, pollen removal increased with flower size 3 days after flowers opened, but not after 6 days when 98% of pollen was removed. Males with larger flowers therefore, may have higher fitness not because pollen removal is more complete, but because pollen is removed more rapidly providing opportunities to pre-empt ovules. In females, pollen deposition increased with flower size 3 days but not 6 days after flowers opened. At both times, deposition exceeded ovule production by four-fold or more, and for 2 years seed production was not limited by pollen. Flower size had no effect on seed production per plant and was negatively related to percent seed set, implying a tradeoff between allocation to attraction and reproductive success. This indicates that larger flower size in females is unlikely to increase fitness. In both sexes, gamete production was positively correlated with flower size. In males, greater pollen production would increase the advantage of large flowers, but in females more ovules may represent a resource cost. Selection to increase flower size and number in W. dioica has probably occurred through male rather than female function. Received: 15 June 1997 / Accepted: 12 February 1998  相似文献   

14.
 In gynodioecious species, females contribute genes to future generations only through ovules, and to persist in populations they must have a compensatory advantage compared with hermaphrodites that reproduce via ovules and pollen. This compensation can result from greater fecundity and/or superior success of progeny from females. We examined differences in seed production and progeny success between females and hermaphrodites in the geophyte Wurmbea biglandulosa to explain the maintenance of females. Females produced more ovuliferous flowers and had more ovules per flower than did hermaphrodites but this did not necessarily result in greater fecundity, in part because seed production of females was pollen-limited. Over four years in one population, open-pollinated females produced 1.32 more seeds than open-pollinated hermaphrodites (range 1.09–1.63). In two other populations examined for one year only females produced 1.07 and 0.79 as many seeds as hermaphrodites. Seed production of open-pollinated females and hermaphrodites was only 55% and 73% that of cross-pollinated plants, respectively, indicating that both genders were pollen-limited but females more so than hermaphrodites. Open-pollinated seeds from females were 1.18–1.27 times more likely to germinate than seeds from hermaphrodites. No gender differences existed in seedling growth or survival. Hermaphrodites were self-compatible, but selfed seed set was only 80% that of crossed seed set. Crossed seed set of females and hermaphrodites did not differ. Assuming nuclear control of male sterility, relative female fitness is insufficient to maintain females at their current frequencies of 17%, and substantial female fitness advantages at later life-cycle stages are required. Received May 4, 2001 Accepted February 25, 2002  相似文献   

15.
When animal home ranges overlap extensively in species lacking overt territorial behaviours, identifying exclusive core areas within individual ranges can be difficult. By analysing the size and overlap of successively smaller core areas among individual Eurasian red squirrels (Sciurus vulgaris), we determined exclusive areas within the home ranges of resident males and females. Possible effects of habitat composition and food supplies were explored by monitoring squirrels in different conifer forests and during years with low and high tree seed production. Using outlier-exclusive cores (OEC) revealed that the total ranges consisted of large sally zones (on average, 35% of the total minimum convex polygon [MCP] range) around home ranges with multi-nucleate cores. The mean OEC home range size did not differ between the sexes but was larger with poor food availability. Home ranges (99% incremental cluster polygons [ICP]) overlapped extensively between sexes (average overlap high food–low food: males by females 21–40%, females by males 43–45%) and among males (males by males 26–44%), while intrasexual overlap among females was low (9–10%). The overlap of inner cores among females rapidly approached zero, suggesting the intrasexual territoriality of 75% core areas. This was not the case among male squirrels, for which intrasexual overlap averaged only 4% at 50% but 18% at 75% core areas. Even the smallest inner cores had some degree of intersexual overlap, indicating that complete territoriality did not occur in this species. Female home ranges were more strongly affected by annual fluctuations in food supplies than male ranges. Females reduced the size of their food-based intrasexual territories when food availability increases. Males probably benefit from using larger home ranges and core areas, which overlap with the ranges of several females, by increasing their probability of successful mating.  相似文献   

16.
Among plants visited by many pollinator species, the relative contribution of each pollinator to plant reproduction is determined by variation in both pollinator and plant traits. Here we evaluate how pollinator movement among plants, apparent pollen carryover, ovule number, resource limitation of seed set, and pollen output affect variation in contribution of individual pollinator species to seed set in Lithophragma parviflorum (Saxifragaceae), a species visited by a broad spectrum of visitors, including beeflies, bees and a moth species. A previous study demonstrated differences among visitor species in their single-visit pollination efficacy but did not evaluate how differences in visitation patterns and pollen carryover affect pollinator efficacy. Incorporation of differential visitation patterns and pollen carryover effects —commonly cited as potentially important in evaluating pollinator guilds — had minor effects (0–0.6% change) on the estimates of relative contribution based on visit frequency and single-visit efficacy alone. Beeflies visited significantly more flowers per inflorescence than the bees and the moth. Seed set remained virtually constant during the first three visited flowers for beeflies and larger bees, indicating that apparent pollen carryover did not reduce per-visit efficacy of these taxa. In contrast, Greya moth visits showed a decrease in seed set by 55.4% and the smaller bees by 45.4% from first to second flower. The larger carryover effects in smaller bees and Greya were diminished in importance by their small overall contribution to seed set. Three variable plant traits may affect seed set: ovule number, resource limitation on seed maturation, and pollen output. Ovule number per flower declined strongly with later position within inflorescences. Numbers were much higher in first-year greenhouse-grown plants than in field populations, and differences increased during 3 years of study. Mean pollen count by position varied 7-fold among flowers; it paralleled ovule number variation, resulting in a relatively stable pollen:ovule ratio. Resource limitation of seed set increased strongly with later flowering, with seed set in hand-pollinated flowers ranging from 66% in early flowers to 0% in the last two flowers of all plants. Variation in ovule number and resource limitation of seed maturation jointly had a strong effect on the number of seeds per flower. Visitation to early flowers had the potential to cause more seed set than visitation to later flowers. Overall, the most important sources of variation to seed production contribution were differences among pollinators in abundance and absolute efficacy (ovules fertilized on a single visit) and potentially differential phenology among visitor species. These effects are likely to vary among populations and years.  相似文献   

17.
Analysing pollen movement is a key to understanding the reproductive system of plant species and how it is influenced by the spatial distribution of potential mating partners in fragmented populations. Here we infer parameters related to levels of pollen movement and diversity of the effective pollen cloud for the wind-pollinated shrub Pistacia lentiscus across a highly disturbed landscape using microsatellite loci. Paternity analysis and the indirect KinDist and Mixed Effect Mating models were used to assess mating patterns, the pollen dispersal kernel, the effective number of males (Nep) and their relative individual fertility, as well as the existence of fine-scale spatial genetic structure in adult plants. All methods showed extensive pollen movement, with high rates of pollen flow from outside the study site (up to 73–93%), fat-tailed dispersal kernels and large average pollination distances (δ = 229–412 m). However, they also agreed in detecting very few pollen donors (Nep = 4.3–10.2) and a large variance in their reproductive success: 70% of males did not sire any offspring among the studied female plants and 5.5% of males were responsible for 50% of pollinations. Although we did not find reduced levels of genetic diversity, the adult population showed high levels of biparental inbreeding (14%) and strong spatial genetic structure (Sp = 0.012), probably due to restricted seed dispersal and scarce safe sites for recruitment. Overall, limited seed dispersal and the scarcity of successful pollen donors can be contributing to generate local pedigrees and to increase inbreeding, the prelude of genetic impoverishment.  相似文献   

18.
Pollen limitation through insufficient pollen deposition on stigmas caused by too infrequent pollinator visitation may influence the reproductive outcome of plants. In this study we investigated how pollinator visitation rate, the degree of pollen limitation, and flower longevity varied spatially among three sites at different altitudes within a population of the dwarf shrub Dryas octopetala L. in alpine southern Norway. Significant pollen limitation on seed set only occurred at the mid-elevation site, while seed set at the other sites appeared to be mainly resource limited, thus indicating a spatial variation in pollen limitation. There was no association between the spatial variation in the extent of pollen limitation and pollinator visitation rate to flowers. However, pollinator visitation rates were related to flower longevity of Dryas; sites with low visitation rates had long-lived flowers and vice versa. Thus, our results suggest within-population spatial co-variation between pollinator visitation rates, pollen limitation, and a developmental response to these factors, flower longevity.  相似文献   

19.
Small populations of many plant species have been shown to exhibit ecological Allee effects. These effects are expected to be pronounced in plants which are obligate outcrossers and rely on pollinators which forage preferentially in larger populations with greater nectar availability. We examined the breeding and pollination systems, level of pollen limitation and seed production in populations of a threatened “ornithophilous” species, Aloe pruinosa. Experimental hand-pollinations showed that A. pruinosa is genetically self-incompatible and thus an obligate outcrosser. Experimental exclusion of birds from inflorescences did not affect seed production, suggesting that insects are effective pollinators. Supplemental hand-pollinations in several populations showed that seed production in A. pruinosa is not pollen limited. Further, there were no significant relationships between population size and any measure of reproductive success in this Aloe species. Small populations of A. pruinosa are thus viable in terms of pollination processes and should be protected from more direct threats, such as habitat alteration.  相似文献   

20.
Restricted gene dispersion – resulting from both self-pollination and limited capability of pollen migration, as well as seed dispersion at short distances – has been considered the main reason for spatial genetic structuring in plant populations. This study evaluated the intrapopulation genetic structure and the mating system in four populations of Solanum lycocarpum, a woody bush occurring in Brazilian Cerrado vegetation. Two hundred and twenty-four individuals were genotyped through five nuclear SSR loci (30 alleles) and six cpSSR loci (82 haplotypes). The study evidenced that the species mates predominantly by outcrossings , that biparental inbreeding is not common, and that there are almost 10 trees participating as pollen donors per mother-tree. The populations were formed by many mother lineages, indicating efficient seed dispersion by the fauna and the occurrence of multiple foundation events. Spatial genetic structure was observed in three populations (average Sp=0.0184 ± 0.0030) and it resulted from both restricted seed dispersion and from vegetative reproduction. During the collection of seeds for ex situ conservation, seeds must be gathered from 150 to 200 mother trees, so that the effective size of 500 individuals is retained. The sampling must comprise the biggest possible number of populations in a wide area to enable the maintenance of the biggest possible haplotypic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号