首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
METABOLISM OF THE PHOSPHOINOSITIDES IN GUINEA-PIG BRAIN SYNAPTOSOMES   总被引:13,自引:4,他引:9  
Abstract— The subcellular distribution of a number of enzymes concerned with inositol lipid metabolism has been studied in sub-fractions of disrupted guinea-pig brain synaptosomes. The enzymes were CDP-diglyceride: inositol phosphatidate transferase, phospha-tidylinositol kinase, diphosphoinositide kinase, diphosphoinositide phosphomonoesterase and diphosphoinositide diesterase. The distribution of phosphatidylinositol kinase in sub-fractions from water-treated synaptosomes was compared with that of other plasma membrane enzymes. After partial solubilization of synaptosomes by Triton X-100 the activities of phosphatidylinositol kinase and several other enzymes were examined.
Distribution of phosphatidylinositol kinase closely resembled that of acetylcholinesterase in sub-fractions of synaptosomes. Both enzymes appeared to be localised in the outer membrane of the synaptosome. CDP-diglyceride: inositol phosphatidate transferase was present in all types of synaptosomal membrane. All three enzymes concerned with diphosphoinositide metabolism were found in the cytoplasm of the synaptosome.  相似文献   

2.
We examined the properties of several enzymes of phospholipid metabolism in axoplasm extruded from squid giant axons. The following synthetic enzymes, CDP-diglyceride: inositol transferase (EC 2.7.8.11), ATP:diglyceride phosphotransferase, diglyceride kinase (EC 2.7.2.-), and phosphatidylinositol kinase (EC 2.7.1.67), were all present in axoplasm. Phospholipid exchange proteins, which catalyzed the transfer of phosphatidylinositol and phosphatidylcholine between membrane preparations and unilamellar lipid vesicles, were also found. However, we did not find conditions under which the synthesis of CDP-diglyceride, phosphatidylserine, and phosphatidylinositol-4,5-diphosphate could be measured. Subcellular fractionation by differential centrifugation showed that the axoplasmic inositol transferase and phosphatidylinositol kinase activities were largely "microsomal," while the diglyceride kinase and exchange protein activities were primarily "cytosolic."  相似文献   

3.
The effect of glucose and calcium on the activities of the phosphatidylinositol cycle enzymes, CDP-diglyceride inositol transferase, diacylglycerokinase, and lysophosphatidylcholine 2-acyltransferase in rat pancreatic islets was studied. Calcium inhibited the activity of CDP-diglyceride inositol transferase but had no effect on lysophosphatidylcholine 2-acyltransferase and diacylglycerokinase activities. Upon preincubation of islets in a concentration of glucose known to stimulate insulin release, the activity of lysophosphatidylcholine 2-acyltransferase, but not that of diacylglycerokinase or the CDP-diglyceride inositol transferase, was stimulated. Subcellular fractionation of pancreatic islets showed that secretory granule membranes were enriched in CDP-diglyceride inositol transferase, whereas lysophosphatidylcholine 2-acyltransferase activity was highest in the microsomal membranes. The activation of 2-acyltransferase by incubating islets in insulinotropic glucose, and the calcium sensitivity of CDP-diglyceride inositol transferase, suggest that these enzymes may have roles in regulation of insulin secretion.  相似文献   

4.
The rabbit iris smooth muscle has been shown to contain triphosphoinositide phosphomonoesterase (phosphatidyl-myo-inositol-4,5-bisphosphate phosphohydrolase, EC 3.1.3.36) and phosphodiesterase (triphosphoinositide inositoltrisphosphohydrolase, EC 3.1.4.11) activities. Under our experimental conditions about 77% of the phosphomonoesterase and 61% of the phosphodiesterase activities were localized in the particulate fraction. The kinetic properties of the enzymes in the microsomal fraction were examined. The enzyme preparation was specific to polyphosphoinositides; it did not attack phosphatidylinositol under the present assay condition. The effects of Ca2+ and Mg2+ were also studied. Although the microsomal enzymes did not require added divalent cations for their activities, both the phosphomonoesterase and phosphodiesterase were appreciably inhibited by 1 mM EDTA. Phosphodiesterase and phosphomonoesterase were stimulated by Ca2+ and Mg2+, respectively. The demonstration of triphosphoinositide phosphodiesterase in the iris muscle, coupled with the findings that this enzyme is activated by Ca2+ and is not influenced by acetylcholine add further support to our previous conclusion (J. Pharmacol. Exp. Ther. (1978) 204, 655--668; J. Neurochem. (1978) 30, 517--525) that an increased Ca2+ influx, following the interaction between the neurotransmitter and its receptor, could act to stimulate the phosphodiesterase, thus leading to increased triphosphoinositide breakdown and increased phosphatidic acid via increased diacylglycerol.  相似文献   

5.
Phosphatidylinositol kinase and diphosphoinositide kinase activities were measured in homogenates of brain and sciatic nerve of developing chick embryos and chicks. Characteristics of the chick nervous system enzymes were similar to those reported for rat brain. Diphosphoinositide kinase was inhibited by high concentrations of ATP and by low concentrations of triphosphoinositide. Both activities were greatly enhanced by the non-ionic detergent, Cutscum, and the ratio of detergent to protein in the reaction mixture was important. Optimum phosphatidylinositol kinase activity required a ratio of 7 : 1 for both tissues. The optimum ratio for diphosphoinositide kinase was 3:1 for nerve homogenates and 0.6:1 for brain. Cutscum increased the concentration of diphosphoinositide that is required for maximum diphosphoinositide kinase activity. Developmental changes were the same for both kinase activities, which were low in unmyelinated brain and sciatic nerve. The activities correlated with the concentration of polyphosphoinositides in chick brain where they increased 4-5 fold during the period of active myelination and remained high in the mature brain. The kinase activities correlated with the rate of triphosphoinositide deposition in sciatic nerve. Following a 2-3 fold increase during the initial phase of myelination the activities declined to values as low as those of embryonic nerve.  相似文献   

6.
The phospholipid composition of Schizosaccharomyces pombe was not markedly affected by changes in the phosphate concentration of the medium or phase of growth. The major fatty acids in the total lipid extract and purified phosphatidylinositol were palmitic acid and oleic acid. Phosphatidic acid was synthesized by acylation of l-3-glycerophosphate in Schiz. pombe and phosphatidate phosphohydrolase was present. Phosphatidylinositol synthesis from inositol occurred in the absence of CDP-diglyceride. Even with dialysed cell-free preparations, the inositol lipid was synthesized by an apparently energy-independent route, at rates greater than would be required during cell growth. Phosphatidylinositol appeared to be broken down by a phospholipase D. All the enzymes examined were particulate; similar activities were found in Saccharomyces cerevisiae.  相似文献   

7.
Obesity in obese-hyperglycaemic mouse is associated with an increase in number and size of adipocytes. Adipocytes from the obese mouse showed increased incorporation of [14C]acetate and[14C]glucose into triacylglycerol. This increased capacity of triacylglycerol formation was correlated with increased activities of various triacylglycerol-forming enzymes measured in the microsomal fraction of adipose tissue from obese mice. Microsomal fractions from lean and obese mice contained sn-glycerol 3-phosphate acyltransferase, phosphatidate phosphohydrolase and diacylglycerol acyltransferase. Phosphatidate phosphohydrolase was also detected in the soluble fraction. In the presence of Mg2+, the phosphatidate phsophohydrolase from the soluble and the microsomal fractions was active towards membrane-bound phosphatidate. Among the three enzymes studied here, the increase in Mg2+-dependent phosphatidate phosphohydrolase was most prominent in adipose tissue of obese mice.  相似文献   

8.
Rat liver microsomes were treated with phospholipase D to obtain microsomal membranes with varying amounts of membrane-bound phosphatidate. This treatment did not impair the activity of two microsomal-bound enzymes acting with phosphatidate as substrate, i.e. CTP: phosphatidate cytidylyltransferase and phosphatidate phosphohydrolase. The dependency of the activity of these enzymes on the concentration of membrane-bound phosphatidate was determined. Both enzymes showed a linear increase in activity with membrane-bound phosphatidate concentrations up to at least 100 nmol phosphatidate/mg microsomal protein. These results indicate that both enzymes have a large reserve capacity and suggest that the enzymes are operating intracellularly, i.e. at phosphatidate concentrations of 5-10 nmol/mg endoplasmic reticulum protein, far below their maximal capacity. The ratio of phosphatidate conversion into CDP-diglyceride and 1,2-diglyceride seems to be constant for a large range of membrane-bound phosphatidate concentrations. The membrane-bound enzymes cannot utilize phosphatidate substrate present in heat-denatured membranes, but are active on phosphatidate incorporated into membranes of phospholipid vesicles.  相似文献   

9.
Cytidine 5'-diphospho-1,2-diacyl-sn-glycerol (CDP-diglyceride) hydrolase, CDP-diglyceride:L-serine O-phosphatidyltransferase, and CDP-diglyceride:sn-glycero-3-phosphate phosphatidyltransferase all release CMP from their liponucleotide substrate, CDP-diglyceride. We have developed a spectrophotometric assay for these enzymes using CMP kinase, pyruvate kinase, and lactate dehydrogenase to couple the release of CMP with the oxidation of NADH. The assay for each of the phospholipid-dependent enzymes was found to be linear both with time and with enzyme concentration. The assay should prove useful for continuous monitoring of enzymatic activity, determination of initial rates of reaction, and detailed kinetic analysis of these enzymes. Since several enzymes and substrates are used in the coupled assay system, the method is limited to analysis of partially purified preparations lacking competing activities.  相似文献   

10.
1. Addition of the bivalent ionophore A23187 to synaptosomes isolated from guinea-pig brain cortex and labelled with [(32)P]phosphate in vitro or in vivo caused a marked loss of radioactivity from phosphatidyl-myo-inositol 4-phosphate (diphosphoinositide) and phosphatidyl-myo-inositol 4,5-bisphosphate (triphosphoinositide) and stimulated labelling of phosphatidate. No change occurred in the labelling of other phospholipids. 2. In conditions that minimized changes in internal Mg(2+) concentrations, the effect of ionophore A23187 on labelling of synaptosomal di- and tri-phosphoinositide was dependent on Ca(2+) and was apparent at Ca(2+) concentrations in the medium as low as 10(-5)m. 3. An increase in internal Mg(2+) concentration stimulated incorporation of [(32)P]phosphate into di- and tri-phosphoinositide, whereas lowering internal Mg(2+) decreased labelling. 4. Increased labelling of phosphatidate was independent of medium Mg(2+) concentration and apparently only partly dependent on medium Ca(2+) concentration. 5. The loss of label from di- and tri-phosphoinositide caused by ionophore A23187 was accompanied by losses in the amounts of both lipids. 6. Addition of excess of EGTA to synaptosomes treated with ionophore A23187 in the presence of Ca(2+) caused a rapid resynthesis of di- and tri-phosphoinositide and a further stimulation of phosphatidate labelling. 7. Addition of ionophore A23187 to synaptosomes labelled in vivo with [(3)H]inositol caused a significant loss of label from di- and tri-phosphoinositide, but not from phosphatidylinositol. There was a considerable rise in labelling of inositol diphosphate, a small increase in that of inositol phosphate, but no significant production of inositol triphosphate. 8. (32)P-labelled di- and tri-phosphoinositides appeared to be located in the synaptosomal plasma membrane. 9. The results indicate that increased Ca(2+) influx into synaptosomes markedly activates triphosphoinositide phosphatase and diphosphoinositide phosphodiesterase, but has little or no effect on phosphatidylinositol phosphodiesterase.  相似文献   

11.
Haemoglobin-free human erythrocyte ghosts that were prepared in the presence of EDTA and were then exposed to Ca2+ showed a substantial loss of phosphatidylinositol phosphate and phosphatidylinositol diphosphate, measured either chemically or by loss of 32P from the lipids of prelabelled membranes. At the same time there was, as reported previously (Allan, D. and Michell, R.H., (1976) Biochim. Biophys. Acta 455, 824--830), and approximately equivalent rise in the diacylglycerol content of the membranes. Analysis of the 32P-labelled water-soluble material released during this process showed that the major products were inositol diphosphate and inositol triphosphate. No change was seen in the phosphatidylinositol or phosphatidate content of the membranes, and there was no Ca2+-activated loss of 32P from the phosphatidate of prelabelled membranes: this suggests that Ca2+ did not activate phosphoinositide phosphomonoesterases or phosphatidate phosphomonoesterase in human erythrocyte membranes. It is concluded that human erythrocyte membranes contain at their cytoplasmic surface a Ca2+-activated phosphodiesterase that is active against both phosphatidylinositol phosphate and phosphatidylinositol diphosphate. Rabbit erythrocytes also contained this enzyme, but in these cells there was also evidence for the presence of a Ca2+-activated phosphatidate phosphomonoesterase.  相似文献   

12.
The diphosphoinositide kinase of rat brain   总被引:11,自引:9,他引:2       下载免费PDF全文
1. The supernatant fraction of adult rat brain contains a diphosphoinositide kinase. 2. Formation of triphosphoinositide by the enzyme in the presence of ATP and Mg(2+) ions was shown with labelled ATP or labelled diphosphoinositide. 3. The kinase was also activated by Ca(2+), Mn(2+) and Co(2+) ions, but to a smaller extent than by Mg(2+) ions. 4. In the presence of optimum Mg(2+) ion concentration the enzyme was inhibited by Ca(2+) ions. 5. Activity did not depend on thiol groups and the pH optimum was 7.3. 6. The dialysed supernatant fraction had no diglyceride kinase activity and negligible phosphatidylinositol kinase activity. 7. Triphosphoinositide phosphomonoesterase was present but showed little activity under the conditions used to assay the kinase. 8. Diphosphoinositide kinase was purified by ammonium sulphate fractionation, ethanol treatment and chromatography on Sephadex G-200. 9. This purification removed much of the triphosphoinositide phosphomonoesterase.  相似文献   

13.
1. Paired iris smooth muscles from rabbits were incubated for 30 min at 37 degrees C in an iso-osmotic salt medium containg glucose, inositol, cytidine and [32P]phosphate. 2. One of the pair was then incubated at 37 degrees C for 10 min in unlabelled medium containing 10mM-2-deoxyglucose and the other was incubated in the presence of acetylcholine plus eserine (0.05mM each). 2-Deoxyglucose, which was included in the incubation medium to minimize the biosynthesis of triphosphoinositide from ATP and diphosphoinositide, decreased the amount of labelled ATP by 71% and inhibited further 32P incorporation from ATP into triphosphoinositide by almost 30%. 3. Acetylcholine (0.05mM) increased significantly the loss of 32P from triphosphoinositide (the 'triphosphoinositide effect') in 32P-labelled iris muscle. This effect was measured both chemically and radiochemically. It was also observed when 32Pi was replaced by myo-[3H]inositol in the incubation medium. 4. The triphosphoinositide effect was blocked by atropine but not by D-tubocurarine. Further, muscarinic but not nicotinic agonists were found to provoke this effect. 5. Acetylcholine decreased by 28% the 32P incorporation into triphosphoinositide, presumably by stimulating its breakdown. This decrement in triphosphoinositide was blocked by atropine, but not by D-tubocurarine. 6. The triphosphoinositide effect was accompanied by a significant increase in 32P labelling, but not tissue concentration, of phosphatidylinositol and phosphatidic acid. The possible relationship between the loss of 32P label from triphosphoinositide in response to acetylcholine and the concomitant increase in that of phosphatidylinositol and phosphatidic acid is discussed. 7. The presence of triphosphoinositide phosphomonoesterase, the enzyme that might be stimulated in the iris smooth muscle by the neurotransmitter, was demonstrated, and, under our methods of homogenization and assay, more than 80% of its activity was localized in the particulate fraction.  相似文献   

14.
To study the influence of nuclear oncogenes on inositol phospholipid metabolism, we examined the various parameters of inositol phospholipid metabolism in PC12 cells expressing adenovirus type 12 or adenovirus type 5 E1A. Although the inositol 1,4,5-trisphosphate content was increased only slightly, the diacylglycerol content was 2.4-fold higher in E1A-expressing PC12 cells. Furthermore, we found that the activity of phospholipase C, one of the key enzymes in inositol phospholipid metabolism, was increased at least five- to eightfold. Diacylglycerol kinase activity in the membrane fraction was 10 to 15% of that in parental PC12 cells. Overall protein kinase C activities in E1A-expressing PC12 cells were decreased, but the activity of membrane-bound protein kinase C was significantly increased. These observations clearly indicate that inositol phospholipid metabolism is stimulated in cells producing E1A and suggest that nuclear oncogene E1A has the ability to stimulate inositol phospholipid metabolism.  相似文献   

15.
It is proposed that cells store calcium in the hydrogen belt of their membranes, on the cytoplasmic side, with the Ca2+ ion captive in cages formed by the phosphate and carbonyl oxygens of two acidic phospholipid molecules; for instance, phosphatidylinositol and phosphatidylserine. Evidence for the existence of such Ca-cages is adduced from the properties of the [Ca(phosphatidate)2] complex. Cytoplasmic Ca2+ concentration, approx. 10(-7) M, corresponds to the calcium cage dissociation constant. The high stability of the cages is the result of multiple hydrogen bonds between inositol and serine, or inositol and inositol. Phosphorylation of the inositol in position 4 and 5 opens the calcium cage by breaking the inter-headgroup hydrogen bonds and by introducing electrostatic and steric hindrance. This allows the escape of Ca2+ into the cytosol. The mono in equilibrium with di in equilibrium with triphosphoinositide shuttle serves as a regulator of Ca2+ concentration in the cytoplasm: phosphorylation of the lipids will raise, dephosphorylation lower the level of free Ca2+. The inositide shuttle may be linked to a stimulus-induced inositide cycle in which inositol triphosphate is generated, and to Ca(phosphatidate)2 cross-membrane transport.  相似文献   

16.
To clarify the signal transduction mechanism of the erbB gene (virus oncogene) products leading to cell growth and transformation, the alteration of signal transduction induced by enhanced inositol phospholipid metabolism was studied in chick embryo fibroblast cells (CEF cells) transformed by gag-fused erbB gene-carrying virus (GEV cells). The incorporations of 32P into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate were markedly increased in GEV cells. In GEV cells, the activities of lipid kinases such as phosphatidylinositol (PI), PIP, and diacylglycerol (DG) kinases were also increased. The activities of other important enzymes involved in inositol phospholipid metabolism, such as CDP-DG:myo-inositol transferase and phospholipase C, were not changed in GEV cells. Increased inositol phospholipid metabolism might lead to the production of second messengers, such as 1,2-DG and inositol 1,4,5-trisphosphate. Indeed, the 1,2-DG content was also increased in GEV cells. Moreover, the activity of protein kinase C (the Ca2+/phospholipid-dependent enzyme), which should be stimulated by 1,2-DG, was elevated in GEV cells; the protein kinase C activity in the membrane fraction of GEV cells was especially high. When CEF cells were treated with tetradecanoylphorbol acetate, protein kinase C activator, plus Ca2+ ionophore, [3H]thymidine incorporation was markedly stimulated, and maximal stimulation was observed with 1 nM Ca2+ ionophore A23187 plus 100 nM TPA. On the other hand, when GEV cells were treated with TPA plus Ca2+ ionophore A23187, [3H]thymidine incorporation was consistently inhibited. Next, studies were made to determine whether the erbB gene product itself had kinase activity on PI, PIP, and DG after membranes were mildly solubilized with Triton X-100 to prevent inactivation of these kinases. Immunoprecipitates of a GEV cell lysate with antisera that reacted with the erbB gene product had PI kinase activity, whereas no activity was detected in those of lysates of uninfected CEF cells. However, the activity was very weak compared with the total cellular activity. No difference in the PIP and DG kinase activities of immunoprecipitates of cell lysates of uninfected CEF cells and GEV cells was observed. These results suggest that the erbB gene product enhances inositol phospholipid metabolism and subsequent signal transduction, but that the erbB gene product is not involved directly in lipid kinases, although it is closely associated with lipid kinase.  相似文献   

17.
The inositol phospholipid metabolism is one of the main pathways of signal transduction in cells. We measured the activities of its key enzymes in v-Ha-ras-transformed 208F rat fibroblasts. In the ras-transformed clones, incorporation of [32P]Pi into intermediates of the inositol phospholipid metabolism was stimulated. The activities of phosphatidylinositol and phosphatidylinositol-4-phosphate kinases in the transformed clones were about 35-50% more than in untransformed cells, indicating increased inositol phospholipid metabolism. However, the activity of diacylglycerol kinase in their membrane fraction was 25-35% less than that of untransformed cells, although the total diacylglycerol kinase activity did not change. The imbalance of these kinases could constitute one of the main reasons leading to the increased level of inositol phosphates and the accumulation of diacylglycerol to 2-2.2 times that in control 208F cells. Phosphatidylinositol-4,5-bisphosphate-phospholipase C activity did not change on the transformation when assayed under various conditions. The increased level of diacylglycerol caused intracellular translocation, activation, and down-regulation of protein kinase C changes which may be one of the essential events in transformation by the v-Ha-ras gene.  相似文献   

18.
Haemoglobin-free human erythrocyte ghosts that were prepared in the presence of EDTA and were then exposed to Ca2+ showed a substantial loss of phosphatidylinositol phosphate and phosphatidylinositol diphosphate, measured either chemically or by loss of 32P from the lipids of prelabelled membranes. At the same time there was, as reported previously (Allan, D. and Michell, R.H., (1976) Biochim. Biophys. Acta 455, 824–830), an approximately equivalent rise in the diacylglycerol content of the membranes. Analysis of the 32P-labelled water-soluble material released during this process showed that the major products were inositol diphosphate and inositol triphosphate. No change was seen in the phosphatidylinositol or phosphatidate content of the membranes, and there was no Ca2+-activated loss of 32P from the phosphatidate of prelabelled membranes: this suggests that Ca2+ did not activate phosphoinositide phosphomonoesterases or phosphatidate phosphomonoesterase in human erythrocyte membranes. It is concluded that human erythrocyte membranes contain at their cytoplasmic surface a Ca2+-activated phosphodiesterase that is active against both phosphatidylinositol phosphate and phosphatidylinositol diphosphate. Rabbit erythrocytes also contained this enzyme, but in these cells there was also evidence for the presence of a Ca2+-activated phosphatidate phosphomonoesterase.  相似文献   

19.
1. Some properties of the triphosphoinositide phosphomonoesterase from the homogenates of guinea-pig brain were studied. The enzyme has an optimum pH range 6.7-7.3, is stimulated with KCl at a concentration of 0.1m, and under these conditions has K(m)1.43x10(-4)m. 2. A factor from the ;pH5 supernatant' of guinea-pig brain stimulates the enzyme activity over and above the stimulation produced by KCl. Subcellular fractions of guinea-pig brain varied in their response to the ;pH5 supernatant'. Maximum stimulation was observed with the P(1) fraction, containing myelin and nuclei. 3. An assay system for the enzyme was developed that contained optimum concentrations of both KCl and the ;pH5 supernatant'. Acid phosphatases were inhibited by NaF, but, in contrast with previous work, no EDTA was added to the assay system to inhibit the alkaline phosphatases. This reagent inhibited the triphosphoinositide phosphomonoesterase. It was estimated that the remaining fraction of non-specific phosphatases can account for only 14% of the observed triphosphoinositide phosphomonoesterase activity. 4. Subcellular fractions of guinea-pig brain were characterized by electron microscopy and subcellular markers. The triphosphoinositide phosphomonoesterase exhibited a distribution between the fractions similar to that of 5'-nucleotidase, but different from that of alkaline phosphatase.  相似文献   

20.
1. The deposition of triphosphoinositide and diphosphoinositide in rat and guinea-pig cerebral hemispheres during growth was measured. 2. The maximum increase in concentration of both of these phospholipids occurs during the period of myelination, but in the rat some di- and tri-phosphoinositide is present before significant myelination begins. 3. In guinea-pig cerebral hemispheres the polyphosphoinositides remaining after post-mortem breakdown are selectively enriched in dissected white matter compared with grey matter. 4. The polyphosphoinositides in the cerebral hemispheres of rats were labelled with injected (32)P very rapidly; the specific radioactivities were in the order triphosphoinositide>diphosphoinositide>monophosphoinositide>total lipid phosphorus. 5. The synthesis of triphosphoinositide in rat forebrain occurs at an appreciable rate before, and at the start of, myelination, but the amount formed per gram of tissue is four to five times greater in adult rat brains, thus maintaining a constant turnover time (about 1hr.) for the whole triphosphoinositide fraction. This indicates that the rapid turnover of triphosphoinositide is independent of myelin deposition. 6. The specific radioactivity of the brain acid-soluble phosphorus pool referred to a constant dose of (32)P/g. body wt. falls rapidly with age, reaching a minimum at 13-14 days, and then rises again. The specific radioactivities of the polyphosphoinositides reflect this change. 7. Part of the polyphosphoinositides in rat and guinea-pig cerebral hemispheres is rapidly hydrolysed post mortem leaving a stable portion resistant to further breakdown. 8. The rate and extent of post-mortem hydrolysis of the polyphosphoinositides in both species decrease with age. 9. After (32)P labelling, the specific radioactivity of the triphosphoinositide remaining in the cerebral hemispheres of the rat after post-mortem breakdown is lower than the original triphosphoinositide fraction, suggesting two metabolically distinct pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号